608
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Changes in retinal and choroidal optical coherence tomography angiography indices among young adults and children over 1 year

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 627-634 | Received 15 May 2023, Accepted 13 Sep 2023, Published online: 17 Oct 2023

References

  • Ng DS, Chan LK, Ng CM et al. Visualising the choriocapillaris: histology, imaging modalities and clinical research - a review. Clin Exp Ophthalmol 2022; 50: 91–103. doi:10.1111/ceo.13984.
  • Catita J, Lopez-Luppo M, Ramos D et al. Imaging of cellular aging in human retinal blood vessels. Exp Eye Res 2015; 135: 14–25. doi:10.1016/j.exer.2015.03.019.
  • Leung H, Wang JJ, Rochtchina E et al. Relationships between age, blood pressure, and retinal vessel diameters in an older population. Invest Ophthalmol Visual Sci 2003; 44: 2900–2904. doi:10.1167/iovs.02-1114.
  • Turgut B. Optical coherence tomography angiography – a general view. Eur Ophth 2016; 10: 39. doi:10.17925/EOR.2016.10.01.39.
  • Chu Z, Zhang Q, Gregori G et al. Guidelines for imaging the choriocapillaris using oct angiography. Am J Ophthalmol 2021; 222: 92–101. doi:10.1016/j.ajo.2020.08.045.
  • Zhao Q, Yang WL, Wang XN et al. Repeatability and reproducibility of quantitative assessment of the retinal microvasculature using optical coherence tomography angiography based on optical microangiography. Biomed Environ Sci 2018; 31: 407–412. doi:10.3967/bes2018.054.
  • Zhang Z, Huang X, Meng X et al. In vivo assessment of macula in eyes of healthy children 8 to 16 years old using optical coherence tomography angiography. Sci Rep 2017; 7: 8936. doi:10.1038/s41598-017-08174-9.
  • Shi Y, Ye L, Chen Q et al. Macular vessel density changes in young adults with high myopia: a longitudinal study. Front Med 2021; 8: 648644. doi:10.3389/fmed.2021.648644.
  • Linderman RE, Heffernan E, Ferrante S et al. The impact of axial eye growth on foveal avascular zone measurements in children. Optom Vis Sci 2021; 99: 127–136. doi:10.1097/OPX.0000000000001854.
  • Lin F, Zhao Z, Li F et al. Longitudinal macular retinal and choroidal microvasculature changes in high myopia. Invest Ophthalmol Visual Sci 2021; 62: 1. doi:10.1167/iovs.62.15.1.
  • Park SH, Cho H, Hwang SJ et al. Changes in the retinal microvasculature measured using optical coherence tomography angiography according to age. J Clin Med 2020; 9: 883. doi:10.3390/jcm9030883.
  • You QS, Chan JCH, Ng ALK et al. Macular vessel density measured with optical coherence tomography angiography and its associations in a large population-based study. Invest Ophthalmol Visual Sci 2019; 60: 4830–4837. doi:10.1167/iovs.19-28137.
  • Hsu ST, Ngo HT, Stinnett SS et al. Assessment of macular microvasculature in healthy eyes of infants and children using OCT angiography. Ophthalmol 2019; 126: 1703–1711. doi:10.1016/j.ophtha.2019.06.028.
  • Borrelli E, Lonngi M, Balasubramanian S et al. Macular microvascular networks in healthy pediatric subjects. Retina 2019; 39: 1216–1224. doi:10.1097/IAE.0000000000002123.
  • Li S, Yang X, Li M et al. Developmental changes in retinal microvasculature in children: a quantitative analysis using optical coherence tomography angiography. Am J Ophthalmol 2020; 219: 231–239. doi:10.1016/j.ajo.2020.05.008.
  • Plaitano C, Periti F, Guagliano R et al. Optical coherence tomography angiography in healthy children: a comparison of macular structure. Eur J Ophthalmol 2021; 32: 2005–2010. doi:10.1177/11206721211043749.
  • Ghassemi F, Hatami V, Salari F et al. Quantification of macular perfusion in healthy children using optical coherence tomography angiography. Int J Retina Vitreous 2021; 7: 56. doi:10.1186/s40942-021-00328-2.
  • Zhang Y, Zhang B, Fan M et al. The vascular densities of the macula and optic disc in normal eyes from children by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2020; 258: 437–444. doi:10.1007/s00417-019-04466-0.
  • Sacconi R, Borrelli E, Corbelli E et al. Quantitative changes in the ageing choriocapillaris as measured by swept source optical coherence tomography angiography. Br J Ophthalmol 2019; 103: 1320–1326. doi:10.1136/bjophthalmol-2018-313004.
  • Karakucuk Y, Comez A, Beyoglu A et al. Evaluation of macular microcirculation in healthy children using optical coherence tomography angiography. Beyoglu Eye J 2021. doi:10.14744/bej.2020.76588.
  • Cheng W, Wang W, Song Y et al. Choriocapillaris and progressive ganglion cell-inner plexiform layer loss in non-glaucomatous eyes. Br J Ophthalmol 2022; 321277. doi:10.1136/bjo-2022-321277.
  • Xu A, Sun G, Duan C et al. Quantitative assessment of three-dimensional choroidal vascularity and choriocapillaris flow signal voids in myopic patients using SS-OCTA. Diagnostics 2021; 11: 11. doi:10.3390/diagnostics11111948.
  • Khan MH, Lam AKC, Armitage JA et al. Impact of axial eye size on retinal microvasculature density in the macular region. J Clin Med 2020; 9: 2539. doi:10.3390/jcm9082539.
  • Yu J, Gu R, Zong Y et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest Ophthalmol Visual Sci 2016; 57: OCT204–210. doi:10.1167/iovs.15-18630.
  • Read SA, Alonso-Caneiro D, Vincent SJ et al. Longitudinal changes in macular retinal layer thickness in pediatric populations: myopic vs non-myopic eyes. PloS One 2017; 12: e0180462. doi:10.1371/journal.pone.0180462.
  • Provis JM, Penfold PL, Cornish EE et al. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom 2005; 88: 269–281. doi:10.1111/j.1444-0938.2005.tb06711.x.
  • Tideman JWL, Polling JR, Vingerling JR et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol 2018; 96: 301–309. doi:10.1111/aos.13603.
  • Alshareef RA, Al-Khersan H, Darwich R et al. Measurement of normative foveal avascular zone parameters in healthy adults using optical coherence tomography angiography. J Vitreoretin Dis 2018; 2: 213–218. doi:10.1177/2474126418778492.
  • Lal B, Alonso-Caneiro D, Read SA et al. Induced refractive error changes the optical coherence tomography angiography transverse magnification and vascular indices. Am J Ophthalmol 2021; 229: 230–241. doi:10.1016/j.ajo.2021.04.012.
  • Lal B, Alonso-Caneiro D, Read SA et al. Changes in retinal optical coherence tomography angiography indexes over 24 hours. Invest Ophthalmol Visual Sci 2022; 63: 25. doi:10.1167/iovs.63.3.25.
  • Rosenfeld PJ, Durbin MK, Roisman L et al. Zeiss angioplex spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol 2016; 56: 18–29.
  • Chu Z, Lin J, Gao C et al. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J Biomed Opt 2016; 21: 66008. doi:10.1117/1.JBO.21.6.066008.
  • Lal B, Alonso-Caneiro D, Read SA et al. Diurnal changes in choroidal optical coherence tomography angiography indices over 24 hours in healthy young adults. Sci Rep 2023; 13: 3551. doi:10.1038/s41598-023-30433-1.
  • Alonso-Caneiro D, Read SA, Collins MJ. Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express 2013; 4: 2795–2812. doi:10.1364/BOE.4.002795.
  • Chiu SJ, Li XT, Nicholas P et al. Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation. Opt Express 2010; 18: 19413–19428. doi:10.1364/OE.18.019413.
  • Icel E, Yilmaz H, Ucak T et al. Evaluation of the optic disc and macula in healthy children using optical coherence tomography angiography. Turk J Ophthalmol 2020; 50: 228–233. doi:10.4274/tjo.galenos.2020.85282.
  • Cheng D, Chen Q, Wu Y et al. Deep perifoveal vessel density as an indicator of capillary loss in high myopia. Eye (Lond) 2019; 33: 1961–1968. doi:10.1038/s41433-019-0573-1.
  • Lam DS, Leung KS, Mohamed S et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Visual Sci 2007; 48: 376–382. doi:10.1167/iovs.06-0426.
  • Zheng F, Zhang Q, Shi Y et al. Age-dependent changes in the macular choriocapillaris of normal eyes imaged with swept-source optical coherence tomography angiography. Am J Ophthalmol 2019; 200: 110–122. doi:10.1016/j.ajo.2018.12.025.
  • Sampson DM, Gong P, An D et al. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest Ophthalmol Visual Sci 2017; 58: 3065–3072. doi:10.1167/iovs.17-21551.
  • Cheung CY, Li J, Yuan N et al. Quantitative retinal microvasculature in children using swept-source optical coherence tomography: the Hong Kong children eye study. Br J Ophthalmol 2018; 103: 672–679. doi:10.1136/bjophthalmol-2018-312413.
  • Golebiewska J, Biala-Gosek K, Czeszyk A et al. Optical coherence tomography angiography of superficial retinal vessel density and foveal avascular zone in myopic children. PloS One 2019; 14: e0219785. doi:10.1371/journal.pone.0219785.
  • Su L, Ji YS, Tong N et al. Quantitative assessment of the retinal microvasculature and choriocapillaris in myopic patients using swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2020; 258: 1173–1180. doi:10.1007/s00417-020-04639-2.
  • Dai Y, Xin C, Zhang Q et al. Impact of ocular magnification on retinal and choriocapillaris blood flow quantification in myopia with swept-source optical coherence tomography angiography. Quant Imaging Med Surg 2020; 11: 948–956. doi:10.21037/qims-20-1011.
  • Asikgarip N, Temel E, Ornek K. Factors effecting the choroidal vascularity index in children with mild to moderate myopia. Photodiagnosis Photodyn Ther 2021; 37: 102652. doi:10.1016/j.pdpdt.2021.102652.
  • Li Z, Long W, Hu Y et al. Features of the choroidal structures in myopic children based on image binarization of optical coherence tomography. Invest Ophthalmol Visual Sci 2020; 61: 18. doi:10.1167/iovs.61.4.18.
  • Wolffsohn JS, Kollbaum PS, Berntsen DA et al. IMI - clinical myopia control trials and instrumentation report. Invest Ophthalmol Vis Sci 2019; 60: M132–M160. doi:10.1167/iovs.18-25955.