179
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Optical coherence tomography angiography in glaucoma

, & ORCID Icon
Pages 110-121 | Received 24 Oct 2023, Accepted 11 Jan 2024, Published online: 24 Jan 2024

References

  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311: 1901–1911. 10.1001/jama.2014.3192.
  • Wong D, Chua J, Baskaran M, et al. Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma. Br J Ophthalmol 2020 Mar; 105: 397–402.
  • Brusini P, Johnson CA. Staging functional damage in glaucoma: review of different classification methods. Surv Ophthalmol 2007; 52: 156–179. 10.1016/j.survophthal.2006.12.008.
  • Chua J, Schwarzhans F, Wong D et al. Multivariate normative comparison, a novel method for improved use of retinal nerve fiber layer thickness to detect early glaucoma. Ophthalmology Glaucoma 2022; 5: 359–368. 10.1016/j.ogla.2021.10.013.
  • Chua J, Tan B, Ke M et al. Diagnostic ability of individual macular layers by spectral-domain OCT in different stages of glaucoma. Ophthalmology Glaucoma 2020; 3: 314–326. 10.1016/j.ogla.2020.04.003.
  • Hirasawa K, Shoji N, Morita T et al. A modified glaucoma staging system based on visual field index. Graefes Arch Clin Exp Ophthalmol 2013; 251: 2747–2752. 10.1007/s00417-013-2490-5.
  • Rao HL, Begum VU, Khadka D et al. Comparing glaucoma progression on 24–2 and 10–2 visual field examinations. PLoS One 2015; 10: e0127233. 10.1371/journal.pone.0127233.
  • Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 2007; 26: 688–710. 10.1016/j.preteyeres.2007.08.001.
  • Susanna FN, Melchior B, Paula JS et al. Variability and power to detect progression of different visual field patterns. Ophthalmol Glaucoma 2021; 4: 617–623. 10.1016/j.ogla.2021.04.004.
  • Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359–393. 10.1016/S1350-9462(02)00008-3.
  • Kiyota N, Shiga Y, Omodaka K et al. Time-course changes in optic nerve head blood flow and retinal nerve fiber layer thickness in eyes with open-angle glaucoma. Ophthalmology 2021; 128: 663–671. 10.1016/j.ophtha.2020.10.010.
  • Abegão Pinto L, Willekens K, Van Keer K et al. Ocular blood flow in glaucoma - the Leuven Eye Study. Acta Ophthalmol 2016; 94: 592–598. 10.1111/aos.12962.
  • Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow – relevance for glaucoma. Experimental Eye Research 2011; 93: 141–155. 10.1016/j.exer.2010.09.002.
  • Cherecheanu AP, Garhofer G, Schmidl D et al. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013; 13: 36–42. 10.1016/j.coph.2012.09.003.
  • Kashani AH, Chen C-L, Gahm JK et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 2017; 60: 66–100. 10.1016/j.preteyeres.2017.07.002.
  • Jia Y, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 2012; 20: 4710–4725. 10.1364/OE.20.004710.
  • de Carlo TE, Romano A, Waheed NK et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 2015; 1: 5. 10.1186/s40942-015-0005-8.
  • Wong D, Chua J, Lin E et al . Focal structure-function relationships in primary open-angle glaucoma using OCT and OCT-A measurements. Invest Ophthalmol Visual Sci 2020 Dec 1; 61: 33.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Visual Sci 2016; 57: OCT451–459. 10.1167/iovs.15-18944.
  • Sakaguchi K, Higashide T, Udagawa S et al. Comparison of sectoral structure-function relationships in glaucoma: vessel density versus thickness in the peripapillary retinal nerve fiber layer. Invest Ophthalmol Visual Sci 2017; 58: 5251–5262. 10.1167/iovs.17-21955.
  • Wong D, Chua J, Tan B et al. Combining OCT and OCTA for focal structure-function modeling in early primary open-angle glaucoma. Invest Ophthalmol Visual Sci 2021; 62: 8. 10.1167/iovs.62.15.8.
  • Kallab M, Hommer N, Schlatter A et al. Combining vascular and nerve fiber layer thickness measurements to model glaucomatous focal visual field loss. Ann N Y Acad Sci 2022; 1511: 133–141. 10.1111/nyas.14732.
  • Van Melkebeke L, Barbosa-Breda J, Huygens M et al. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res 2018; 60: 1–13. 10.1159/000488495.
  • Moghimi S, Hou H, Rao H, et al. Optical coherence tomography angiography and glaucoma: a brief review. Asia Pac J Ophthalmol (Phila) 2019; 8: 115–125.
  • Rao HL, Pradhan ZS, Suh MH et al. Optical coherence tomography angiography in glaucoma. J Glaucoma 2020; 29: 312–321. 10.1097/IJG.0000000000001463.
  • Tan B, Sim R, Chua J et al. Approaches to quantify optical coherence tomography angiography metrics. Ann Transl Med 2020; 8: 1205. 10.21037/atm-20-3246.
  • Chen CL, Bojikian KD, Gupta D et al. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant Imaging Med Surg 2016; 6: 125–133. 10.21037/qims.2016.03.05.
  • Tan B, Chua J, Lin E et al. Quantitative microvascular analysis with wide-field optical coherence tomography angiography in eyes with diabetic retinopathy. JAMA Netw Open 2020; 3: e1919469. 10.1001/jamanetworkopen.2019.19469.
  • Schmetterer L, Kiel J. Ocular blood flow. Berlin, Heidelberg: Springer; 2012.
  • Mo S, Phillips E, Krawitz BD et al. Visualization of radial peripapillary capillaries using optical coherence tomography angiography: the effect of image averaging. PLoS One 2017; 12: e0169385. 10.1371/journal.pone.0169385.
  • Lin E, Ke M, Tan B et al. Are choriocapillaris flow void features robust to diurnal variations? A swept-source optical coherence tomography angiography (OCTA) study. Sci Rep 2020; 10: 11249. 10.1038/s41598-020-68204-x.
  • Jia Y, Wei E, Wang X et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014; 121: 1322–1332. 10.1016/j.ophtha.2014.01.021.
  • Shen AJ, Urrea AL, Lee JC et al. Repeatability and reproducibility of 4.5 by 4.5 mm peripapillary optical coherence tomography angiography scans in glaucoma and non-glaucoma eyes. J Glaucoma 2022; 31: 773–782. 10.1097/IJG.0000000000002054.
  • Venugopal JP, Rao HL, Weinreb RN et al. Repeatability and comparability of peripapillary vessel density measurements of high-density and non-high-density optical coherence tomography angiography scans in normal and glaucoma eyes. Br J Ophthalmol 2019; 103: 949–954. 10.1136/bjophthalmol-2018-312401.
  • Venugopal JP, Rao HL, Weinreb RN et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol 2018; 102: 352–357. 10.1136/bjophthalmol-2017-310637.
  • Vorperian A, Khan N, Lee J et al. Intrasession repeatability and intersession reproducibility of macular vessel parameters on optical coherence tomography angiography in glaucomatous and non-glaucomatous eyes. Curr Eye Res 2022; 47: 1068–1076. 10.1080/02713683.2022.2061004.
  • Salazar-Quiñones L, Peña-Urbina P, Fernández-Vigo JI et al. Reproducibility of peripapillary, optic nerve head and macular vessel density by OCT-A according to glaucoma severity staging. Arch Soc Esp Oftalmol (Engl Ed) 2023; 98: 317–324. 10.1016/j.oftal.2023.01.011.
  • Kee AR, Yip VCH, Tay ELT et al. Comparison of two different optical coherence tomography angiography devices in detecting healthy versus glaucomatous eyes - an observational cross-sectional study. BMC Ophthalmol 2020; 20: 440–undefined. 10.1186/s12886-020-01701-9.
  • Hong J, Tan B, Quang ND et al. Intra-session repeatability of quantitative metrics using widefield Optical Coherence Tomography Angiography (OCTA) in elderly subjects. Acta Ophthalmol 2019; 98: 570–578. 10.1111/aos.14327.
  • Sawaspadungkij M, Apinyawasisuk S, Suwan Y et al. Disagreement of radial peripapillary capillary density among four optical coherence tomography angiography devices. Transl Vis Sci Technol 2023; 12: 7–undefined. 10.1167/tvst.12.8.7.
  • You QS, Tan O, Pi S et al. Effect of algorithms and covariates in glaucoma diagnosis with optical coherence tomography angiography. Br J Ophthalmol 2021; 106: 1703–1709. 10.1136/bjophthalmol-2020-318677.
  • Bojikian KD, Chen CL, Wen JC et al. Optic disc perfusion in primary open-angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLoS One 2016; 11: e0154691–undefined. 10.1371/journal.pone.0154691.
  • Akil H, Huang AS, Francis BA et al. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One 2017; 12: 12. 10.1371/journal.pone.0170476.
  • E Silva NR, Chiou CA, Wang M et al. Microvasculature of the optic nerve head and peripapillary region in patients with primary open-angle glaucoma. J Glaucoma 2019; 28: 281–288. 10.1097/IJG.0000000000001165.
  • Moghimi S, Zangwill LM, Penteado RC et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 2018; 125: 1720–1728. 10.1016/j.ophtha.2018.05.006.
  • Liu L, Jia Y, Takusagawa HL et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 2015; 133: 1045–1052.
  • Mansoori T, Sivaswamy J, Gamalapati JS et al. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma. J Glaucoma 2017; 26: 438–443. 10.1097/IJG.0000000000000649.
  • Naderi Beni A, Imani Z, Ghanbari H. Comparison of peripapillary and macular vascular density in primary open-angle glaucoma, pseudoexfoliation glaucoma, and normal control eyes. Photodiagnosis Photodyn Ther 2022; 37: 102611. 10.1016/j.pdpdt.2021.102611.
  • Chen HS, Liu CH, Wu WC et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Visual Sci 2017; 58: 3637–3645. 10.1167/iovs.17-21846.
  • Bekkers A, Borren N, Ederveen V et al. Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions. Acta Ophthalmol 2020; 98: 537–558. 10.1111/aos.14392.
  • Triolo G, Rabiolo A, Shemonski ND et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Visual Sci 2017; 58: 5713–5722. 10.1167/iovs.17-22865.
  • Poli M, Cornut PL, Nguyen AM et al. Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma. J francais d’ophtalmologie 2018; 41: 619–629. 10.1016/j.jfo.2018.02.004.
  • Moghimi S, SafiZadeh M, Fard MA et al. Changes in optic nerve head vessel density after acute primary angle closure episode. Invest Ophthalmol Visual Sci 2019; 60: 552–558. 10.1167/iovs.18-25915.
  • Köse HC, Tekeli O. Comparison of microvascular parameters and diagnostic ability of optical coherence tomography angiography between eyes with primary angle closure glaucoma and primary open angle glaucoma. Photodiagnosis Photodyn Ther 2022; 40: 40. 10.1016/j.pdpdt.2022.103114.
  • Wong D, Chua J, Baskaran M et al. Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma. Br J Ophthalmol 2021; 105: 397–402. 10.1136/bjophthalmol-2020-315985.
  • Richter GM, Madi I, Chu Z et al. Structural and functional associations of macular microcirculation in the ganglion cell-inner plexiform layer in glaucoma using optical coherence tomography angiography. J Glaucoma 2018; 27: 281–290. 10.1097/IJG.0000000000000888.
  • Kwon J, Choi J, Shin JW et al. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci 2017; 58: 1637–1645. 10.1167/iovs.16-21079.
  • Müller O, Todorova MG, Schlote T. OCT angiography of the central macular capillary network in glaucoma patients and healthy controls. Klin Monbl Augenheilkd 2018; 235: 436–444. 10.1055/s-0043-124651.
  • Kwon J, Shin JW, Lee J et al. Choroidal microvasculature dropout is associated with parafoveal visual field defects in glaucoma. Am J Ophthalmol 2018; 188: 141–154. 10.1016/j.ajo.2018.01.035.
  • Rao HL, Sreenivasaiah S, Riyazuddin M et al. Choroidal microvascular dropout in primary angle-closure glaucoma. Am J Ophthalmol 2019; 199: 184–192. 10.1016/j.ajo.2018.11.021.
  • Coeckelbergh TR, Cornelissen FW, Brouwer WH et al. Age-related changes in the functional visual field: further evidence for an inverse age x eccentricity effect. J Gerontol B Psychol Sci Soc Sci 2004; 59: 11–18. 10.1093/geronb/59.1.P11.
  • Montesano G, Quigley HA, Crabb DP. Improving the power of glaucoma neuroprotection trials using existing visual field data. Am J Ophthalmol 2021; 229: 127–136. 10.1016/j.ajo.2021.04.008.
  • Park HL, Kim JW, Park CK. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology 2018; 125: 1003–1013. 10.1016/j.ophtha.2018.01.016.
  • Snezhana M, Georgi B. OCT results in myopia: diagnostic difficulties in clinical practice? J Clin Med 2022; 11: 11. 10.3390/jcm11123430.
  • Lee A, Shin JW, Lee JY et al. Association of superficial and deep macular microvasculature with central visual field sensitivity in glaucomatous eyes with high myopia. JCM 2022; 11: 10.3390/jcm11154430.
  • Chang PY, Wang JY, Wang JK et al. Optical coherence tomography angiography compared with optical coherence tomography for detection of early glaucoma with high myopia. Front Med 2021; 8: 10.3389/fmed.2021.793786.
  • Lee EJ, Kim TW, Kim JA et al. Parapapillary deep-layer microvasculature dropout in primary open-angle glaucoma eyes with a parapapillary γ-zone. Invest Ophthalmol Visual Sci 2017; 58: 5673–5680. 10.1167/iovs.17-22604.
  • Lee SH, Lee EJ, Kim TW. Topographic correlation between juxtapapillary choroidal thickness and parapapillary deep-layer microvasculature dropout in primary open-angle glaucoma. Br J Ophthalmol 2018; 102: 1134–1140. 10.1136/bjophthalmol-2017-311136.
  • Kwon JM, Weinreb RN, Zangwill LM et al. Parapapillary deep-layer microvasculature dropout and visual field progression in glaucoma. Am J Ophthalmol 2019; 200: 65–75. 10.1016/j.ajo.2018.12.007.
  • Yip VCH, Wong HT, Yong VKY et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma 2019; 28: 80–87. 10.1097/IJG.0000000000001125.
  • Chao SC, Yang SJ, Chen HC et al. Early macular angiography among patients with glaucoma, ocular hypertension, and normal subjects. J Ophthalmol 2019; 2019: 7419470. 10.1155/2019/7419470.
  • Milani P, Urbini LE, Bulone E et al. The macular choriocapillaris flow in glaucoma and within-day fluctuations: an optical coherence tomography angiography study. Invest Ophthalmol Visual Sci 2021; 62: 22. 10.1167/iovs.62.1.22.
  • Lun K, Sim YC, Chong R et al. Investigating the macular choriocapillaris in early primary open-angle glaucoma using swept-source optical coherence tomography angiography. Front Med 2022; 9: 999167. 10.3389/fmed.2022.999167.
  • Lains I, Wang JC, Cui Y et al. Retinal applications of swept source Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA). Prog Retin Eye Res 2021; 84: 100951. 10.1016/j.preteyeres.2021.100951.
  • Leung CK, Liu S, Weinreb RN et al. Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology 2011; 118: 1551–1557. 10.1016/j.ophtha.2010.12.035.
  • Moghimi S, Bowd C, Zangwill LM et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 2019; 126: 980–988. 10.1016/j.ophtha.2019.03.003.
  • Ozturker ZK, Kurt RA. Effect of mydriatic administration on retinal hemodynamics in glaucoma: an optical coherence tomography angiography study. J Glaucoma 2022; 31: 659–665. 10.1097/IJG.0000000000002039.
  • Villatoro G, Bowd C, Proudfoot JA et al. Impact of pupil dilation on optical coherence tomography angiography retinal microvasculature in healthy eyes. J Glaucoma 2020; 29: 1025–1029. 10.1097/IJG.0000000000001647.
  • Lin YH, Su WW, Huang SM et al. Optical coherence tomography angiography vessel density changes in normal-tension glaucoma treated with carteolol, brimonidine, or dorzolamide. J Glaucoma 2021; 30: 690–696. 10.1097/IJG.0000000000001859.
  • Gillmann K, Rao HL, Mansouri K. Changes in peripapillary and macular vascular density after laser selective trabeculoplasty: an optical coherence tomography angiography study. Acta Ophthalmol 2022; 100: 203–211. 10.1111/aos.14805.
  • Chihara E, Dimitrova G, Chihara T. Increase in the OCT angiographic peripapillary vessel density by ROCK inhibitor ripasudil instillation: a comparison with brimonidine. Graefes Arch Clin Exp Ophthalmol 2018; 256: 1257–1264. 10.1007/s00417-018-3945-5.
  • Liu C, Umapathi RM, Atalay E et al. The effect of medical lowering of intraocular pressure on peripapillary and macular blood flow as measured by optical coherence tomography angiography in treatment-naive eyes. J Glaucoma 2021; 30: 465–472. 10.1097/IJG.0000000000001828.
  • Chua J, Le TT, Tan B et al. Choriocapillaris microvasculature dysfunction in systemic hypertension. Sci Rep 2021; 11: 4603. 10.1038/s41598-021-84136-6.
  • Chua J, Chin CWL, Hong J et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens 2019; 37: 572–580. 10.1097/HJH.0000000000001916.
  • Chua J, Chin CWL, Tan B et al. Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension. Sci Rep 2019; 9: 5819. 10.1038/s41598-019-41917-4.
  • Chua J, Sim R, Tan B et al. Optical coherence tomography angiography in diabetes and diabetic retinopathy. J Clin Med 2020; 9: 1723. 10.3390/jcm9061723.
  • Chua J, Hu Q, Ke M et al. Retinal microvasculature dysfunction is associated with Alzheimer’s disease and mild cognitive impairment. Alzheimers Res Ther 2020; 12: 161. 10.1186/s13195-020-00724-0.
  • Bostan M, Chua J, Sim YC et al. Microvascular changes in the macular and parafoveal areas of multiple sclerosis patients without optic neuritis. Sci Rep 2022; 12: 13366. 10.1038/s41598-022-17344-3.
  • Bostan M, Li C, Sim YC et al. Combining retinal structural and vascular measurements improves discriminative power for multiple sclerosis patients. Ann N Y Acad Sci 2023; 1529: 72–83. 10.1111/nyas.15060.
  • Lim HB, Kim YW, Nam KY et al. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography. Sci Rep 2019; 9: 16299. 10.1038/s41598-019-52818-x.
  • Kamalipour A, Moghimi S, Hou H et al. OCT angiography artifacts in glaucoma. Ophthalmology 2021; 128: 1426–1437. 10.1016/j.ophtha.2021.03.036.
  • Cheng W, Song Y, Lin F et al. Assessment of artifacts in swept-source optical coherence tomography angiography for glaucomatous and normal eyes. Transl Vis Sci Technol 2022; 11: 23. 10.1167/tvst.11.1.23.
  • Takusagawa HL, Liu L, Ma KN et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 2017; 124: 1589–1599. 10.1016/j.ophtha.2017.06.002.
  • Kamalipour A, Moghimi S, Hou H et al. Multilayer macula vessel density and visual field progression in glaucoma. Am J Ophthalmol 2022; 237: 193–203. 10.1016/j.ajo.2021.11.018.
  • Liu L, Edmunds B, Takusagawa HL et al. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma. Am J Ophthalmol 2019; 207: 99–109. 10.1016/j.ajo.2019.05.024.
  • De Jesus D A, Brea LS, Breda JB et al. OCTA multilayer and multisector peripapillary microvascular modeling for diagnosing and staging of glaucoma. Transl Vis Sci Technol 2020; 9: 1–22. 10.1167/tvst.9.2.58.
  • Bowd C, Belghith A, Proudfoot JA et al. Gradient-boosting classifiers combining vessel density and tissue thickness measurements for classifying early to moderate glaucoma. Am J Ophthalmol 2020; 217: 131–139. 10.1016/j.ajo.2020.03.024.
  • Kwon HJ, Kwon J, Sung KR. Additive role of optical coherence tomography angiography vessel density measurements in glaucoma diagnoses. Korean J Ophthalmol 2019; 33: 315–325. 10.3341/kjo.2019.0016.
  • Bowd C, Belghith A, Zangwill LM et al. Deep learning image analysis of optical coherence tomography angiography measured vessel density improves classification of healthy and glaucoma eyes. Am J Ophthalmol 2022; 236: 298–308. 10.1016/j.ajo.2021.11.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.