1,053
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Optical coherence tomography angiography in the diagnosis of ocular disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 482-498 | Received 07 Dec 2023, Accepted 21 Feb 2024, Published online: 07 Mar 2024

References

  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 1178–1181. doi:10.1126/science.1957169.
  • Ly A, Phu J, Katalinic P et al. An evidence-based approach to the routine use of optical coherence tomography. Clin Exp Optom 2019; 102: 242–259. doi:10.1111/cxo.12847.
  • Pichi F, Invernizzi A, Tucker WR et al. Optical coherence tomography diagnostic signs in posterior uveitis. Prog Retin Eye Res 2020; 75: 100797. doi:10.1016/j.preteyeres.2019.100797.
  • Spaide RF, Fujimoto JG, Waheed NK et al. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64: 1–55. doi:10.1016/j.preteyeres.2017.11.003.
  • Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1871–1883. doi:10.1007/s00417-014-2840-y.
  • Agrawal R, Ding J, Sen P et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index. Prog Retin Eye Res 2020; 77: 100829. doi:10.1016/j.preteyeres.2020.100829.
  • Sazhnyev Y, Sin TN, Ma A et al. Choroidal changes in rhesus macaques in aging and age-related drusen. Invest Ophthalmol Vis Sci 2023; 64: 44. doi:10.1167/iovs.64.12.44.
  • Kashani AH, Chen CL, Gahm JK et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 2017; 60: 66–100. doi:10.1016/j.preteyeres.2017.07.002.
  • Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res 2016; 52: 130–155. doi:10.1016/j.preteyeres.2015.10.002.
  • Ho S, Ly A, Ohno-Matsui K et al. Diagnostic accuracy of OCTA and OCT for myopic choroidal neovascularisation: a systematic review and meta-analysis. Eye (Lond) 2023; 37: 21–29. doi:10.1038/s41433-022-02227-8.
  • Ong CJT, Wong MYZ, Cheong KX et al. Optical coherence tomography angiography in retinal vascular disorders. Diagno (Basel) 2023; 13: 1620. doi:10.3390/diagnostics13091620.
  • Kornblau IS, El-Annan JF. Adverse reactions to fluorescein angiography: a comprehensive review of the literature. Surv Ophthalmol 2019; 64: 679–693. doi:10.1016/j.survophthal.2019.02.004.
  • Chiang J, Wong E, Whatham A et al. The usefulness of multimodal imaging for differentiating pseudopapilloedema and true swelling of the optic nerve head: a review and case series. Clin Exp Optom 2015; 98: 12–24. doi:10.1111/cxo.12177.
  • Ly A, Nivison-Smith L, Zangerl B et al. Advanced imaging for the diagnosis of age-related macular degeneration: a case vignettes study. Clin Exp Optom 2018; 101: 243–254. doi:10.1111/cxo.12607.
  • Kalloniatis M, Wang H, Katalinic P et al. Ocular ischaemia: signs, symptoms, and clinical considerations for primary eye care practitioners. Clin Exp Optom 2022; 105: 117–134. doi:10.1080/08164622.2021.1999771.
  • Wang H, Kalloniatis M. Clinical outcomes of the centre for eye health: an intra-professional optometry-led collaborative eye care clinic in Australia. Clin Exp Optom 2021; 104: 795–804. doi:10.1080/08164622.2021.1878821.
  • Greig EC, Duker JS, Waheed NK. A practical guide to optical coherence tomography angiography interpretation. Int J Retina Vitreous 2020; 6: 55. doi:10.1186/s40942-020-00262-9.
  • Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res 2017; 58: 115–151. doi:10.1016/j.preteyeres.2017.01.003.
  • Campbell JP, Zhang M, Hwang TS et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 2017; 7: 42201. doi:10.1038/srep42201.
  • Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 2015; 35: 2196–2203. doi:10.1097/IAE.0000000000000635.
  • Freiberg FJ, Pfau M, Wons J et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254: 1051–1058. doi:10.1007/s00417-015-3148-2.
  • Lee J, Moon BG, Cho AR et al. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 2016; 123: 2368–2375. doi:10.1016/j.ophtha.2016.07.010.
  • La Mantia A, Kurt RA, Mejor S et al. Comparing fundus fluorescein angiography and swept-source optical coherence tomography angiography in the evaluation of diabetic macular perfusion. Retina 2019; 39: 926–937. doi:10.1097/IAE.0000000000002045.
  • Tan CS, Lim LW, Chow VS et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci 2016; 57: 224–234. doi:10.1167/iovs.15-18869.
  • Hwang TS, Jia Y, Gao SS et al. Optical coherence tomography angiography features of diabetic retinopathy. Retina 2015; 35: 2371–2376. doi:10.1097/IAE.0000000000000716.
  • de Carlo TE, Romano A, Waheed NK et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 2015; 1: 5. doi:10.1186/s40942-015-0005-8.
  • Pellegrini M, Cozzi M, Staurenghi G et al. Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders. PloS One 2019; 14: e0214892. doi:10.1371/journal.pone.0214892.
  • Teussink MM, Breukink MB, van Grinsven MJ et al. OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci 2015; 56: 5229–5237. doi:10.1167/iovs.15-17140.
  • Tanaka K, Mori R, Kawamura A et al. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol 2017; 101: 51–55. doi:10.1136/bjophthalmol-2016-309264.
  • Lim HB, Kim YW, Nam KY et al. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography. Sci Rep 2019; 9: 16299. doi:10.1038/s41598-019-52818-x.
  • WuDunn D, Takusagawa HL, Sit AJ et al. OCT angiography for the diagnosis of glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology 2021; 128: 1222–1235. doi:10.1016/j.ophtha.2020.12.027.
  • Mehta N, Marco RD, Goldhardt R et al. Central retinal artery occlusion: acute management and treatment. Curr Ophthalmol Rep 2017; 5: 149–159. doi:10.1007/s40135-017-0135-2.
  • Biousse V, Nahab F, Newman NJ. Management of acute retinal ischemia: follow the guidelines! Ophthalmology 2018; 125: 1597–1607. doi:10.1016/j.ophtha.2018.03.054.
  • Bonini Filho MA, Adhi M, de Carlo TE et al. Optical coherence tomography angiography in retinal artery occlusion. Retina 2015; 35: 2339–2346. doi:10.1097/IAE.0000000000000850.
  • Yang S, Liu X, Li H et al. Optical coherence tomography angiography characteristics of acute retinal arterial occlusion. BMC Ophthalmol 2019; 19: 147. doi:10.1186/s12886-019-1152-8.
  • Rudkin AK, Lee AW, Chen CS. Ocular neovascularization following central retinal artery occlusion: prevalence and timing of onset. Eur J Ophthalmol 2010; 20: 1042–1046. doi:10.1177/112067211002000603.
  • Kashani AH, Lee SY, Moshfeghi A et al. Optical coherence tomography angiography of retinal venous occlusion. Retina 2015; 35: 2323–2331. doi:10.1097/IAE.0000000000000811.
  • Wakabayashi T, Sato T, Hara-Ueno C et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2017; 58: 2087–2094. doi:10.1167/iovs.16-21208.
  • Koulisis N, Kim AY, Chu Z et al. Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PloS One 2017; 12: e0176404. doi:10.1371/journal.pone.0176404.
  • Hayreh SS, Rojas P, Podhajsky P et al. Ocular neovascularization with retinal vascular occlusion-III. Incidence of ocular neovascularization with retinal vein occlusion. Ophthalmology 1983; 90: 488–506. doi:10.1016/S0161-6420(83)34542-5.
  • Natural history and clinical management of central retinal vein occlusion. The central vein occlusion study group. Arch Ophthalmol 1997; 115: 486–491. doi:10.1001/archopht.1997.01100150488006.
  • Leasher JL, Bourne RR, Flaxman SR et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 2016; 39: 1643–1649. doi:10.2337/dc15-2171.
  • Chua J, Sim R, Tan B et al. Optical coherence tomography angiography in diabetes and diabetic retinopathy. J Clin Med 2020; 9: 1723. doi:10.3390/jcm9061723.
  • Samara WA, Shahlaee A, Adam MK et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 2017; 124: 235–244. doi:10.1016/j.ophtha.2016.10.008.
  • Spaide RF. Volume-rendered optical coherence tomography of diabetic retinopathy pilot study. Am J Ophthalmol 2015; 160: 1200–1210. doi:10.1016/j.ajo.2015.09.010.
  • Spaide RF. Volume-rendered optical coherence tomography of retinal vein occlusion pilot study. Am J Ophthalmol 2016; 165: 133–144. doi:10.1016/j.ajo.2016.02.037.
  • Vaz-Pereira S, Dansingani KK, Chen KC et al. Tomographic relationships between retinal neovascularization and the posterior vitreous in proliferative diabetic retinopathy. Retina 2017; 37: 1287–1296. doi:10.1097/IAE.0000000000001336.
  • Kishi S. Vitreous anatomy and the vitreomacular correlation. Jpn J Ophthalmol 2016; 60: 239–273. doi:10.1007/s10384-016-0447-z.
  • Arrigo A, Romano F, Albertini G et al. Vascular patterns in retinitis pigmentosa on swept-source optical coherence tomography angiography. J Clin Med 2019; 8: 1425. doi:10.3390/jcm8091425.
  • Verbakel SK, van Huet RAC, Boon CJF et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66: 157–186. doi:10.1016/j.preteyeres.2018.03.005.
  • Kalloniatis M, Fletcher EL. Retinal degeneration: challenge and opportunity. Clin Exp Optom 2005; 88: 265–266. doi:10.1111/j.1444-0938.2005.tb06709.x.
  • Kalloniatis M, Loh CS, Acosta ML et al. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2013; 96: 310–332. doi:10.1111/cxo.12015.
  • Inooka D, Ueno S, Kominami T et al. Quantification of macular microvascular changes in patients with retinitis pigmentosa using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2018; 59: 433–438. doi:10.1167/iovs.17-23202.
  • Santos A, Humayun MS, de Juan E Jr. et al. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 1997; 115: 511–515. doi:10.1001/archopht.1997.01100150513011.
  • Battaglia Parodi M, Cicinelli MV, Rabiolo A et al. Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography. Br J Ophthalmol 2017; 101: 428–432. doi:10.1136/bjophthalmol-2016-308925.
  • Miyata M, Oishi A, Hasegawa T et al. Concentric choriocapillaris flow deficits in retinitis pigmentosa detected using wide-angle swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2019; 60: 1044–1049. doi:10.1167/iovs.18-26176.
  • Shen C, Li Y, Wang Q et al. Choroidal vascular changes in retinitis pigmentosa patients detected by optical coherence tomography angiography. BMC Ophthalmol 2020; 20: 384. doi:10.1186/s12886-020-01640-5.
  • Liu J, Shen MR, Rosenfeld PJ. OCT angiography imaging of macular neovascularization in AMD. In: Jacoby R, editor. Age-related macular degeneration and other causes of choroidal neovascularizaton. Moran CORE Open Source Ophthalmology Education for Students, Residents, Fellows, Healthcare Workers, and Clinicians; 2022 [accessed 2024 Feb 8]. https://morancore.utah.edu/section-12-retina-and-vitreous/oct-angiography-imaging-of-macular-neovascularization-in-amd/.
  • Arrigo A, Bianco L, Antropoli A et al. New OCT and OCTA insights in inherited retinal dystrophies. In: Giudice G Gattazzo I, editors. Optical coherence tomography. Rijeka: Intech Open; 2023 [accessed 2023 Feb 8]. https://www.intechopen.com/chapters/85971.
  • Cideciyan AV, Swider M, Aleman TS et al. ABCA4 disease progression and a proposed strategy for gene therapy. Hum Mol Genet 2009; 18: 931–941. doi:10.1093/hmg/ddn421.
  • Alonso-Caneiro D, Kugelman J, Tong J et al. Use of uncertainty quantification as a surrogate for layer segmentation error in Stargardt disease retinal OCT images. In Zhou J, Salvado O, Sohel F, Borges P, Vinicius K Wang S, editors. Proceedings of the 2021 Digital Image Computing: Techniques and Applications (DICTA); p. 1–8; 2021; United States of America: Institute of Electrical and Electronics Engineers Inc.
  • Al-Khuzaei S, Broadgate S, Foster CR et al. An overview of the genetics of ABCA4 retinopathies, an evolving story. Genes (Basel) 2021; 12: 1241. doi:10.3390/genes12081241.
  • Battaglia Parodi M, Cicinelli MV, Rabiolo A et al. Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. Br J Ophthalmol 2017; 101: 780–785. doi:10.1136/bjophthalmol-2016-308869.
  • Arrigo A, Romano F, Aragona E et al. OCTA-based identification of different vascular patterns in Stargardt disease. Transl Vis Sci Technol 2019; 8: 26. doi:10.1167/tvst.8.6.26.
  • Heath Jeffery RC, Chen FK. Stargardt disease: multimodal imaging: a review. Clin Exp Ophthalmol 2021; 49: 498–515. doi:10.1111/ceo.13947.
  • Wong WL, Su X, Li X et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014; 2: e106–116. doi:10.1016/S2214-109X(13)70145-1.
  • Wang W, Gawlik K, Lopez J et al. Genetic and environmental factors strongly influence risk, severity and progression of age-related macular degeneration. Signal Transduct Target Ther 2016; 1: 16016. doi:10.1038/sigtrans.2016.16.
  • Ammar MJ, Hsu J, Chiang A et al. Age-related macular degeneration therapy: a review. Curr Opin Ophthalmol 2020; 31: 215–221. doi:10.1097/ICU.0000000000000657.
  • Muakkassa NW, Chin AT, de Carlo T et al. Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography. Retina 2015; 35: 2252–2259. doi:10.1097/IAE.0000000000000836.
  • Khan H, Aziz AA, Sulahria H et al. Emerging treatment options for geographic atrophy (GA) secondary to age-related macular degeneration. Clin Ophthalmol 2023; 17: 321–327. doi:10.2147/OPTH.S367089.
  • Biarnés M, Garrell-Salat X, Gómez-Benlloch A et al. Methodological appraisal of phase 3 clinical trials in geographic atrophy. Biomedicines 2023; 11: 1548. doi:10.3390/biomedicines11061548.
  • Toto L, Borrelli E, Di Antonio L et al. Retinal vascular plexuses’ changes in dry age-related macular degeneration, evaluated by means of optical coherence tomography angiography. Retina 2016; 36: 1566–1572. doi:10.1097/IAE.0000000000000962.
  • Borrelli E, Shi Y, Uji A et al. Topographic analysis of the choriocapillaris in intermediate age-related macular degeneration. Am J Ophthalmol 2018; 196: 34–43. doi:10.1016/j.ajo.2018.08.014.
  • Cicinelli MV, Rabiolo A, Sacconi R et al. Retinal vascular alterations in reticular pseudodrusen with and without outer retinal atrophy assessed by optical coherence tomography angiography. Br J Ophthalmol 2018; 102: 1192–1198. doi:10.1136/bjophthalmol-2017-311317.
  • Trinh M, Kalloniatis M, Nivison-Smith L. Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography. Transl Vis Sci Technol 2019; 8: 20. doi:10.1167/tvst.8.4.20.
  • Trinh M, Kalloniatis M, Nivison-Smith L. Radial peripapillary capillary plexus sparing and underlying retinal vascular impairment in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 2021; 62: 2. doi:10.1167/iovs.62.4.2.
  • Carnevali A, Mastropasqua R, Gatti V et al. Optical coherence tomography angiography in intermediate and late age-related macular degeneration: review of current technical aspects and applications. Appl Sci 2020; 10: 8865. doi:10.3390/app10248865.
  • Schneider EW, Fowler SC. Optical coherence tomography angiography in the management of age-related macular degeneration. Curr Opin Ophthalmol 2018; 29: 217–225. doi:10.1097/ICU.0000000000000469.
  • Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 2015; 49: 67–81. doi:10.1016/j.preteyeres.2015.06.002.
  • Pugazhendhi A, Hubbell M, Jairam P et al. Neovascular macular degeneration: a review of etiology, risk factors, and recent advances in research and therapy. Int J Mol Sci 2021; 22: 1170. doi:10.3390/ijms22031170.
  • Finger RP, Daien V, Eldem BM et al. Anti-vascular endothelial growth factor in neovascular age-related macular degeneration - a systematic review of the impact of anti-VEGF on patient outcomes and healthcare systems. BMC Ophthalmol 2020; 20: 294. doi:10.1186/s12886-020-01554-2.
  • Costanzo E, Miere A, Querques G et al. Type 1 choroidal neovascularization lesion size: indocyanine green angiography versus optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: 307–313. doi:10.1167/iovs.15-18830.
  • Huang D, Jia Y, Rispoli M et al. Optical coherence tomography angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment. Retina 2015; 35: 2260–2264. doi:10.1097/IAE.0000000000000846.
  • Staropoli PC, Iyer P, Gregori G et al. Identification of macular neovascularization in central serous chorioretinopathy using swept-source OCT angiography. Am J Ophthalmol Case Rep 2023; 30: 101843. doi:10.1016/j.ajoc.2023.101843.
  • Shen M, Zhou H, Kim K et al. Choroidal changes in eyes with polypoidal choroidal vasculopathy after anti-VEGF therapy imaged with swept-source OCT angiography. Invest Ophthalmol Vis Sci 2021; 62: 5. doi:10.1167/iovs.62.15.5.
  • Mastropasqua R, Evangelista F, Amodei F et al. Optical coherence tomography angiography in macular neovascularization: a comparison between different OCTA devices. Transl Vis Sci Technol 2020; 9: 6. doi:10.1167/tvst.9.11.6.
  • Brown RB, Mohan S, Chhablani J. Pachychoroid spectrum disorders: an updated review. J Ophthalmic Vis Res 2023; 18: 212–229. doi:10.18502/jovr.v18i2.13188.
  • Borooah S, Sim PY, Phatak S et al. Pachychoroid spectrum disease. Acta Ophthalmol 2021; 99: e806–e822. doi:10.1111/aos.14683.
  • Sagar P, Sodhi PS, Roy S et al. Pachychoroid neovasculopathy: a comparative review on pathology, clinical features, and therapy. Eur J Ophthalmol 2022; 32: 767–780. doi:10.1177/11206721211036290.
  • Moghimi S, Bowd C, Zangwill LM et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 2019; 126: 980–988. doi:10.1016/j.ophtha.2019.03.003.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 2017; 124: 709–719. doi:10.1016/j.ophtha.2017.01.004.
  • Verticchio Vercellin A, Siesky B, Antman G et al. Regional vessel density reduction in the macula and optic nerve head of patients with pre-perimetric primary open angle glaucoma. J Glaucoma 2023; 32: 930–941. doi:10.1097/IJG.0000000000002310.
  • Lee EJ, Han JC, Kee C et al. Peripapillary vascular density in compressive optic neuropathy and normal-tension glaucoma: a severity-controlled comparison. Invest Ophthalmol Vis Sci 2023; 64: 10. doi:10.1167/iovs.64.12.10.
  • Ling JW, Yin X, Lu QY et al. Optical coherence tomography angiography of optic disc perfusion in non-arteritic anterior ischemic optic neuropathy. Int J Ophthalmol 2017; 10: 1402–1406. doi:10.18240/ijo.2017.09.12.
  • De Rojas JO, Rasool N, Chen RW et al. Optical coherence tomography angiography in Leber hereditary optic neuropathy. Neurology 2016; 87: 2065–2066. doi:10.1212/WNL.0000000000003313.
  • Abe M, Omodaka K, Kikawa T et al. Radial peripapillary capillary density in superior segmental optic hypoplasia measured with OCT angiography. BMC Ophthalmol 2020; 20: 199. doi:10.1186/s12886-020-01453-6.