106
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Computational characterization of millimetre-wave heat exchangers with an AlN:Mo susceptor of multiple cylindrical elements

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 18-36 | Received 14 Jul 2021, Accepted 21 Oct 2021, Published online: 24 Jan 2022

References

  • Benford JN. 2008. Space applications of high-power microwaves. IEEE Trans Plasma Sci. 36(3):569–581.
  • Boll DW, Donovan J, Graham RL, Lubachevsky BD. 2000. Improving dense packings of equal disks in a square. Electron J Combin. 7(1):1–9.
  • Brown WC, Eves EE. 1992. Beamed microwave power transmission and its application to space. IEEE Trans Microwave Theory Techn. 40(6):1239–1250.
  • Celuch M, Kopyt P. 2009. Modeling of microwave heating of foods. In Lorence MW and Pesheck PS (Eds), Development of packaging and products for use in microwave ovens, Cambridge (UK): Woodhead Publishing, p. 305–348.
  • COMSOL Multiphysics. 1998–2020. COMSOL AB, www.comsol.com.
  • Coopersmith JC, Davis E. 2016. A strategic roadmap for commercializing low-cost beamed energy propulsion launch systems, Proc. AIAA SPACE, Art. no. 5555.
  • Gaone JM, Tilley BS, Yakovlev VV. 2019. Electromagnetic heating control via high-frequency resonance of a triple-layer laminate. J Eng Math. 114(1):65–86.
  • Goldberg M. 1970. The packing of equal circles in a square. Math Magazine. 43(1):24–30.
  • Hilario MS, Hoff BW, Jawdat BI, Dynys FW, Wang JJ. 2017. High temperature millimetre-wave permittivity measurement setup for beamed energy heat exchangers. 55th AIAA Aerospace Sciences Meeting, 2017,
  • Hilario MS, Hoff BW, Jawdat BI, Lanagan MT, Cohick AW, Dynys FW, Mackey JA, Gaone JM. 2019. W-band complex permittivity measurements at high temperature using free-space methods. IEEE Trans Compon Packag Manufact Technol. 9(6):1011–1019.
  • Hoff BW, Hilario MS, Jawdat BI, Baros AE, Dynys FW, Mackey JA, Yakovlev VV, Andraka CE, Armijo KM, Savrun E, Rittersdorf IM. 2018. Millimeter wave interactions with high temperature materials and their applications to power beaming, Proc. 52nd IMPI’s Microwave Power Symposium, Long Beach (CA), 2018, p. 82–83.
  • Hoff BW, Dynys FW, Hayden SC, Grudt RO, Hilario MS, Baros AE, Ostraat ML. 2019a. Characterization of AlN-based ceramic composites for use as millimetre wave susceptor materials at high temperature: high temperature thermal properties of AlN:Mo with 0.25% to 4.0% Mo by volume. MRS Adv. 4(27):1531–1512.
  • Hoff BW, Hayden SC, Hilario MS, Grudt RO, Dynys FW, Baros AE, Rittersdorf IM, Ostraat MW. 2019b. Characterization of AlN-based ceramic composites for use as millimetre-wave susceptor materials at high temperature: dielectric properties of AlN:Mo with 0.25 v% to 4.0 v% Mo at temperatures from 25-550 °C. J Mater Res. 34(15):2573–2581.
  • Jamar A, Majid Z, Azmi W, Norhafana M, Razak A. 2016. A review of water heating system for solar energy applications. Int. Commun. Heat Mass Transfer. 76:178–187.
  • Jamnejad V, Silva A. 2008. Microwave power beaming strategies for fractionated spacecraft systems. Proc. 2008 IEEE Aerospace Conference, Big Sky, MT, March 2008, 14 pp.
  • Jawdat BI, Hoff BW, Hilario MS, Baros AE, Pelletier P, Sabo T, Dynys FW. 2017. Composite ceramics for power beaming. Proc. 2017 IEEE Wireless Power Transfer Conf., 978-1-5090-4595-3/17.
  • Koert P, Cha JT. 1992. Millimeter wave technology for space power beaming. IEEE Trans Microwave Theory Techn. 40(6):1251–1258.
  • Kopyt P, Celuch M. 2007. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the FDTD algorithm. J Microw Power Electromagn Energy. 41(4):18–29.
  • Koutchma T, Yakovlev VV. 2010. Computer modelling of microwave heating processes for food preservation. In: Farid M, editor, Mathematical analysis of food processing, CRC Press, Boca Raton (FL), p. 625–657.
  • Kumi P, Venne JS, Yakovlev VV, Hilario MS, Hoff BW, Rittersdorf IM. 2020a. Computational characterization of a composite ceramic block for a millimetre wave heat exchanger. In: Nicosia G and Romano V, editors, Scientific computing in electrical engineering, Cham: Springer, p. 65–74.
  • Kumi P, Martin SA, Yakovlev VV, Hilario MS, Hoff BW, Rittersdorf IM. 2020b. Electromagnetic-thermal model of a millimetre-wave heat exchanger based on an AlN:Mo susceptor. COMPEL. 39(2):481–496.
  • Landis GA. 1999. Beamed energy propulsion for practical interstellar flight. J. Brit. Interplanet Soc. 52:420–423.
  • Maranas CD, Floudas CA, Pardalos PM. 1995. New results in the packing of equal circles in a square. Discrete Math. 142(1-3):287–293.
  • Mohekar AA, Gaone JM, Tilley BS, Yakovlev VV. 2018. A 2D coupled electromagnetic, thermal and fluid flow model: Application to layered microwave heat exchangers. Proc. IEEE MTT-S Intern. Microwave Symp., Philadelphia (PA), 2018, p. 1389–1392.
  • Mohekar AA, Tilley BS, Yakovlev VV. 2019a. A 2D model of a triple layer electromagnetic heat exchanger with porous media flow. Proc. IEEE MTT-S Intern. Microwave Symp., Boston (MA), 2019, p. 59–62.
  • Mohekar AA, Tilley BS, Yakovlev VV. 2019b. Plane wave irradiation of a layered system: Resonance-based control over thermal runaway. Proc. 17th Intern. Conf. on Microwave and High Freq. Heating, Valencia (Spain), 2019, p. 292–300.
  • Mohekar AA, Tilley BS, Yakovlev VV. 2020. A triple layer electromagnetic heat exchanger with plane Poiseuille flow: control and local onset of thermal runaway. IEEE J Multiscale Multiphys Comput Tech. 5:119–131.
  • Parkin KL, DiDomenico LD, Culick FE. 2004. The microwave thermal thruster concept. Proc. 2nd Intern. Symp. Beamed Energy Propulsion, 2004, p. 418–429.
  • Rittersdorf IM, Hoff BW, Richardson AS, Martin SA, Yakovlev VV, Kim PS, Schumer JW. 2021. A one-dimensional model for the millimetre-wave absorption and heating of dielectric materials in power beaming applications. IEEE Trans Plasma Sci. 49(2):695–702.
  • Rodenbeck CT, Jaffe PI, Strassner BH, Hausgen PE, McSpadden JO, Kazemi H, Shinohara N, Tierney BB, DePuma CB, Self AP. 2021. Microwave and millimetre wave power beaming. IEEE J Microw. 1(1):229–259.
  • QuickWave. 1998–2021. QWED Sp. z o. o., www.qwed.eu.
  • Sayigh A. 2012. Comprehensive renewable energy, Amsterdam: Elsevier.
  • Sienna Technologies. 2011. http://siennatech.com/wp-content/uploads/2011/10/ST-200-AIN-Thermal-Conductivity.pdf.
  • Yakovlev VV, Allan SM, Fall ML, Shulman HS. 2011. Computational study of thermal runaway in microwave processing of zirconia. In Tao J, editor, Microwave and RF power applications, Cépaduès Éditions, Toulouse, p. 303–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.