116
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Dielectric behavior of soil as a function of frequency, temperature, moisture content and soil texture: a deep neural networks based regression model

ORCID Icon, &
Pages 145-167 | Received 13 Mar 2022, Accepted 13 Jul 2022, Published online: 22 Jul 2022

References

  • Albergel C, de Rosnay P, Gruhier C, Muñoz-Sabater J, Hasenauer S, Isaksen L, Kerr Y, Wagner W. 2012. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens Environ. 118:215–226.
  • AOAC, Official Methods of Analysis. 1998. 16th ed., vol. 52, no. 2. Association of Official Agricultural Chemists.
  • Bansal N, Dhaliwal AS, Mann KS. 2015. Dielectric properties of corn flour from 0.2 to 10 GHz. J Food Eng. 166:255–262.
  • Barba AA, d’Amore M. 2012. Relevance of dielectric properties in microwave assisted processes. Micro Mater Charact. 6:91–118.
  • Blake GR, Hartge KH. 1986. Bulk density. In: Klute A, editor. Methods of soil analysis: part 1: physical and mineralogical methods. American Society of Agronomy, Agronomy Monographs 9(1), Madison, Wisconsin, 1188 pp.
  • Bobrov PP, Belyaeva TA, Kroshka ES, Rodionova OV. 2019. Soil moisture measurement by the dielectric method. Eurasian Soil Sci. 52(7):822–833.
  • Bobrov PP, Belyaeva TA, Kroshka ES, Rodionova OV. 2022. The effect of dielectric relaxation processes on the complex dielectric permittivity of soils at frequencies from 10 kHz to 8 GHz–part I: experimental. IEEE Trans Geosci Remote Sens. 60:1–9.
  • Brocca L, Melone F, Moramarco T, Morbidelli R. 2010. Spatial‐temporal variability of soil moisture and its estimation across scales. Water Resour Res. 46(2):1–14.
  • Brodie G. 2016. Derivation of a cropping system transfer function for weed management: part 2. Microwave weed management. Glob J Agric Innov. 3:1–9.
  • Brodie G, Hamilton S, Woodworth J. 2007. An assessment of microwave soil pasteurization for killing seeds and weeds. Plant Prot Q. 22(4):143.
  • Brodie G, Ryan C, Lancaster C. 2012. The effect of microwave radiation on prickly paddy melon (Cucumis myriocarpus). Int J Agron. 2012:1–10.
  • Campbell Scientific. 1998. CS615 water content reflectometer user guide.
  • Campos MM, Campos C R. 2017. Applications of quartering method in soils and foods. Int J Eng. 7(1):35–39.
  • Cihlar J, Ulaby FT. 1974. Dielectric properties of soils as a function of moisture content.
  • Crow WT, Berg AA, Cosh MH, Loew A, Mohanty BP, Panciera R, de Rosnay P, Ryu D, Walker JP. 2012. Upscaling sparse ground‐based soil moisture observations for the validation of coarse‐resolution satellite soil moisture products. Rev Geophys. 50(2):1–20.
  • Curtis JO, Weiss CA, Jr, Everett JB. 1995. Effect of soil composition on dielectric properties. U.S. Army Corp. of Eng., Waterways Experim. St., 3909 Halls Ferry Road Vicksburg, MS 39180-6199, Tech. Rep. EL-95-34.
  • Dauerman L, Windgasse G, He Y, Lu Y. 1992. Microwave treatment of hazardous wastes: feasibility studies. In AMPC Asia-Pacific Microwave Conference. IEEE, August, Vol. 1, p. 155–157.
  • Day PR. 1965. Particle fractionation and particle‐size analysis. In: Methods of soil analysis: part 1: physical and mineralogical properties, including statistics of measurement and sampling. Vol. 9. p. 545–567. American Society of Agronomy, Inc. DOI: 10.2134/agronmonogr9.1.
  • Famiglietti JS, Ryu D, Berg AA, Rodell M, Jackson TJ. 2008. Field observations of soil moisture variability across scales. Water Resour Res. 44(1):1–16.
  • Fedotov N, Zhukov DV, Tret'yakov Y, Pozdnyakov AI. 2005. The role of organomineral gel in the origin of soil resistivity: concept and experiments. Eurasian Soil Sci. 38(5):492–500.
  • Ferguson RB, Hergert GW, Shapiro CA, Wortmann CS. 2007. Guidelines for soil sampling. NebGuide G1740, University of Nebraska–Lincoln, USA.
  • Fitch FB, McCulloch WS, Walter P. 1944. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. vol. 9, pp. 49–133, 9(2).
  • Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge, Massachusetts, London, England: MIT Press.
  • Hallikainen MT, Ulaby FT, Dobson MC, El-Rayes MA, LK, Wu LK. 1985. Microwave dielectric behavior of wet soil-part 1: empirical models and experimental observations. IEEE Trans Geosci Remote Sens. GE-23(1):25–34.
  • Han J, Mao K, Xu T, Guo J, Zuo Z, Gao C. 2018. A soil moisture estimation framework based on the CART algorithm and its application in China. J Hydrol. 563:65–75.
  • Hendrickx JM, Borchers B, Woolslayer J, Dekker LW, Ritsema C, Paton S. 2001. Spatial variability of dielectric properties in field soils. In Detection and Remediation Technologies for Mines and Minelike Targets VI. Int J Opt Photonics. 4394(October):398–408.
  • Hopfield JJ. 1988. Artificial neural networks. IEEE Circuits Devices Mag. 4(5):3–10.
  • Huang GY, Zhao L, Dong YH, Zhang Q. 2011. Remediation of soils contaminated with polychlorinated biphenyls by microwave-irradiated manganese dioxide. J Hazard Mater. 186(1):128–132.
  • Huisman JA, Hubbard SS, Redman JD, Annan AP. 2003. Measuring soil water content with ground penetrating radar: a review. Vadose Zone J. 2(4):476–491.
  • Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning. PMLR. June. p. 448–456.
  • Ivezić V, Kraljević D, Lončarić Z, Engler M, Kerovec D, Zebec V, Jović J. 2016. Organic matter determined by loss on ignition and potassium dichromate method. In 51st Croatian and 11th International Symposium on Agriculture, Opatija, Croatia. February. Vol. 36, p. 40.
  • Jackson TJ. 1987. Effects of soil properties on microwave dielectric constants. Transp Res Board. 1119: 126–131.
  • Kaatze U. 1989. Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data. 34(4):371–374.
  • Kabir H, Khan MJ, Brodie G, Gupta D, Pang A, Jacob MV, Antunes E. 2020. Measurement and modelling of soil dielectric properties as a function of soil class and moisture content. J Microw Power Electromagn Energy. 54(1):3–18.
  • Kawala Z, Atamańczuk T. 1998. Microwave-enhanced thermal decontamination of soil. Environ Sci Technol. 32(17):2602–2607.
  • Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Kotsiantis SB, Kanellopoulos D, Pintelas PE. 2006. Data preprocessing for supervised leaning. Int J Comput Sci. 1(2):111–117.
  • Lal R. 2011. Organic matter, effects on soil physical properties and processes. In: Gliński J, Horabik J, Lipiec J. editors. Encyclopedia of agrophysics. Encyclopedia of earth sciences series. Dordrecht: Springer.
  • Lau SK, Dag D, Ozturk S, Kong F, Subbiah J. 2020. A comparison between the open-ended coaxial probe method and the parallel plate method for measuring the dielectric properties of low-moisture foods. LWT. 130:109719.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444.
  • Lin L, Yuan S, Chen J, Wang L, Wan J, Lu X. 2010. Treatment of chloramphenicol-contaminated soil by microwave radiation. Chemosphere. 78(1):66–71.
  • Liu PWG, Chang TC, Chen CH, Wang MZ, Hsu HW. 2014. Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils. Int Biodeterior Biodegrad. 95:276–284.
  • Lund ED, Christy CD, Drummond PE. 1999. Practical applications of soil electrical conductivity mapping. Precis Agric. 99:771–779.
  • Lyon TL, Buckman HO. 1952. The nature and properties of soils. New York: The Macmillan Company, LWW. 74(4):333.
  • Motie JB, Aghkhani MH, Rohani A, Lakzian A. 2021. A soft-computing approach to estimate soil electrical conductivity. Biosyst Eng. 205:105–120.
  • Nelson S, Ballard LAT, Stetson LE, Buchwald T. 1976. Increasing legume seed germination by VHF and microwave dielectric heating. Transact ASAE. 19(2):369–371.
  • Nelson SO. 1996. A review and assessment of microwave energy for soil treatment to control pests. Trans ASABE. 39(1):281–289.
  • Nelson SO, Stetson LE. 1985. Germination responses of selected plant species to RF electrical seed treatment. Trans ASABE. 28(6):2051–2058.
  • Nolz R, Kammerer G. 2017. Evaluating a sensor setup with respect to near-surface soil water monitoring and determination of in-situ water retention functions. J Hydrol. 549:301–312.
  • Peplinski NR, Ulaby FT, Dobson MC. 1995. Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Trans Geosci Remote Sensing. 33(3):803–807.
  • Rajib MA, Merwade V, Yu Z. 2016. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J Hydrol. 536:192–207.
  • Rohani A, Taki M, Abdollahpour M. 2018. A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (part: I). Renew Energy. 115:411–422.
  • Ryu D, Famiglietti JS. 2005. Characterization of footprint‐scale surface soil moisture variability using Gaussian and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resour Res. 41(12):1–13.
  • Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller KR. 2021. Explaining deep neural networks and beyond: a review of methods and applications. Proc IEEE. 109(3):247–278.
  • Seyfried MS, Grant LE. 2007. Temperature effects on soil dielectric properties measured at 50 MHz. Vadose Zone J. 6(4):759–765.
  • Stuchly MA, Stuchly SS. 1980. Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies-A review. IEEE Trans Instrum Meas. 29(3):176–183.
  • Tauler R, Walczak B. 2009. Comprehensive chemometrics: chemical and biochemical data analysis, Netherlands: Elsevier.
  • Topp GC. 2003. State of the art of measuring soil water content. Hydrol Process. 17(14):2993–2996.
  • Topp GC, Davis JL, Annan AP. 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res. 16(3):574–582.
  • Vereecken H, Huisman JA, Bogena H, Vanderborght J, Vrugt JA, Hopmans JW. 2008. On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour Res. 44(4):1–21.
  • Wang C, Cui Y, Ma Z, Guo Y, Wang Q, Xiu Y, Xiao R, Zhang M. 2020. Simulating spatial variation of soil carbon content in the Yellow River Delta: comparative analysis of two artificial neural network models. Wetlands. 40(2):223–233.
  • Wang JR, Schmugge TJ. 1980. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans Geosci Remote Sens. GE-18(4):288–295.
  • Yadav N, Yadav A, Kumar M. 2015. An introduction to neural network methods for differential equations. Berlin: Springer. p. 13–15.
  • Yegnanarayana B. 2009. Artificial neural networks. Delhi: PHI Learning Pvt. Ltd.
  • Yu X, Drnevich VP. 2004. Soil water content and dry density by time domain reflectometry. J Geotech Geoenviron Eng. 130(9):922–934.
  • Zhang C, Jiang J, Ma J, Zhang X, Yang Q, Ouyang Q, Lei X. 2015. Evaluating soil reinforcement by plant roots using artificial neural networks. Soil Use Manage. 31(3):408–416.
  • Zribi M, Baghdadi N, Nolin M. 2011. Remote sensing of soil. Appl Environ Soil Sci. 2011, 2 pages, Article ID 904561. DOI: 10.1155/2011/904561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.