Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 47, 2018 - Issue 6
432
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed Rheumatoid Arthritis patients

, , , , , & show all

References

  • Abbas AK, Lichtman AH, Pillai S. (2017). Cellular and molecular immunology. Philadelphia: Elsevier, 334.
  • Akimova T, Beier UH, Wang L, et al. (2011). Helios expression is a marker of T cell activation and proliferation. PloS One, 6, e24226. doi:10.1371/journal.pone.0024226.
  • Alexander T, Sattler A, Templin L, et al. (2013). Foxp3+ Helios+ regulatory T cells are expanded in active systemic lupus erythematosus. Ann Rheum Dis, 72, 1549–1558. doi:10.1136/annrheumdis-2012-202216.
  • Alunno A, Manetti M, Caterbi S, et al. (2015). Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and proinflammatory Th17 cells and therapeutic implications. Mediators Inflamm, 2015.
  • Al-Zifzaf DS, El Bakry SA, Mamdouh R, et al. (2015). FoxP3+ T regulatory cells in Rheumatoid arthritis and the imbalance of the Treg/TH17 cytokine axis. Egypt Rheumatol, 37, 7–15. doi:10.1016/j.ejr.2014.06.004.
  • Baine I, Basu S, Ames R, et al. (2013). Helios induces epigenetic silencing of IL2 gene expression in regulatory T cells. J Immunol, 190, 1008–1016. doi:10.4049/jimmunol.1200792.
  • Baylin SB, Jones PA. (2011). A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer, 11, 726. doi:10.1038/nrc3130.
  • Belkaid Y. (2007). Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol, 7, 875. doi:10.1038/nri2189.
  • Cao D, Malmström V, Baecher-Allan C, et al. (2003). Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol, 33, 215–223. doi:10.1002/immu.200390024.
  • Churlaud G, Pitoiset F, Jebbawi F, et al. (2015). Human and mouse CD8+ CD25+ FOXP3+ regulatory T cells at steady state and during interleukin-2 therapy. Front Immunol, 6, 171. doi:10.3389/fimmu.2015.00171.
  • Cottrell S, Jung K, Kristiansen G, et al. (2007). Discovery and validation of 3 novel DNA methylation markers of prostate cancer prognosis. J Urol, 177, 1753–1758. doi:10.1016/j.juro.2007.01.010.
  • Diller ML, Kudchadkar RR, Delman KA, et al. (2016). Balancing inflammation: the link between Th17 and regulatory T cells. Mediators Inflamm, 2016. doi:10.1155/2016/6309219.
  • Du W, Shen Y-W, Lee W-H, et al. (2013). Foxp3+ Treg expanded from patients with established diabetes reduce Helios expression while retaining normal function compared to healthy individuals. PloS One, 8, e56209. doi:10.1371/journal.pone.0056209.
  • Floess S, Freyer J, Siewert C, et al. (2007). Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol, 5, e38. doi:10.1371/journal.pbio.0050038.
  • Getnet D, Grosso JF, Goldberg MV, et al. (2010). A role for the transcription factor Helios in human CD4+ CD25+ regulatory T cells. Mol Immunol, 47, 1595–1600. doi:10.1016/j.molimm.2010.02.001.
  • Golding A, Hasni S, Illei G, Shevach EM. (2013). The percentage of FoxP3+ Helios+ Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum, 65, 2898–2906. doi:10.1002/art.38119.
  • Haque M, Fino K, Lei F, et al. (2014). Utilizing regulatory T cells against rheumatoid arthritis. Front Oncol, 4, 209. doi:10.3389/fonc.2014.00209.
  • Jiao Z, Wang W, Jia R, et al. (2007). Accumulation of FoxP3‐expressing CD4+ CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol, 36, 428–433. doi:10.1080/03009740701482800.
  • Johin K, Hardtek-Wolenski M, Jaeckel E, et al. (2017). Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis, 8, 3219. doi:10.1038/s41419-017-0010-y.
  • Jones PA, Takai D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070. doi:10.1126/science.1063852.
  • Kennedy A, Schmidt EM, Cribbs AP, et al. (2014). A novel upstream enhancer of FOXP3, sensitive to methylation-induced silencing, exhibits dysregulated methylation in rheumatoid arthritis Treg cells. Eur J Immunol, 44, 2968–2978. doi:10.1002/eji.201444453.
  • Komatsu N, Okamoto K, Sawa S, et al. (2014). Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med, 20, 62–68. doi:10.1038/nm.3432.
  • Li L-C, Dahiya R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18, 1427–1431. doi:10.1093/bioinformatics/18.11.1427.
  • Li N, Ma T, Han J, et al. (2014). Increased apoptosis induction in CD4+ CD25+ Foxp3+ T cells contributes to enhanced disease activity in patients with rheumatoid arthritis through IL-10 regulation. Eur Rev Med Pharmacol Sci, 18, 78–85.
  • Miller S, Dykes D, Polesky H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 16, 1215. doi:10.1093/nar/16.3.1215.
  • Muller M, Herrath J, Malmstorm V. (2015). IL-1R1 is expressed on both Helios(+) and Helios(-) FoxP3(+) CD4(+) T cells in the rheumatic joint. Clin Exp Immunol, 182, 90–100. doi:10.1111/cei.12668.
  • Ngalamika O, Liang G, Zhao M, et al. (2015). Peripheral whole blood FOXP3 TSDR methylation: a potential marker in severity assessment of autoimmune diseases and chronic infections. Immunol Invest, 44, 126–136. doi:10.3109/08820139.2014.938165.
  • Schmittgen TD, Livak KJ. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Prot, 3, 1101. doi:10.1038/nprot.2008.73.
  • Sebastian M, Lopez-Ocasio M, Metidji A, et al. (2016). Helios controls a limited subset of regulatory T cell functions. J Immunol, 196, 144–155. doi:10.4049/jimmunol.1501704.
  • Takatori H, Kawashima H, Matsuki A, et al. (2015). Helios Enhances Treg Cell Function in Cooperation With FoxP3. Arthritis Rheumatol, 67, 1491–1502. doi:10.1002/art.39091.
  • Van Amelsfort JM, Jacobs KM, Bijlsma JW, et al. (2004). CD4+ CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheumatol, 50, 2775–2785. doi:10.1002/art.20499.
  • Vignali DA, Collison LW, Workman CJ. (2008). How regulatory T cells work. Nat Rev Immunol, 8, 523. doi:10.1038/nri2343.
  • Wang Y, Wang Q, Sun X, et al. (2014). DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol, 171, 39–47. doi: 10.1111/bjd.12913.
  • Xing Q, Su HCui J, et al. (2012). Role of Treg cells and TGF-?1 in patients with systemic lupus erythematosus: a possible relation with lupus nephritis. Immunol Invest, 41, 15–27. doi: 10.3109/08820139.2011.578189
  • Xu W-H, Zhang A-M, Ren M-S, et al. (2012). Changes of Treg-associated molecules on CD4+ CD25+ Treg cells in myasthenia gravis and effects of immunosuppressants. J Clin Immunol, 32,975–983. doi:10.1007/s10875-012-9685-0.
  • Yadav M, Louvet C, Davini D, et al. (2012). Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med: Jem, 209, 1713–1722. doi:10.1084/jem.20120822.
  • Zhuo C, Li Z, Xu Y, Wang Y, et al. (2014). Higher FOXP3-TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival. Mol Cancer, 13, 153. doi:10.1186/1476-4598-13-153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.