Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 47, 2018 - Issue 7
250
Views
3
CrossRef citations to date
0
Altmetric
Article

Exogenous IL-9 Ameliorates Experimental Autoimmune Myasthenia Gravis Symptoms in Rats

, , , , , , , ORCID Icon & show all

References

  • Abdul-Wahid A, Cydzik M, Prodeus A, et al. (2016). Induction of antigen-specific TH 9 immunity accompanied by mast cell activation blocks tumor cell engraftment. International Journal of Cancer, 139, 841–853. doi: 10.1002/ijc.30121
  • Aguilo-Seara G, Xie Y, Sheehan J, et al. (2017). Ablation of IL-17 expression moderates experimental autoimmune myasthenia gravis disease severity. Cytokine, 96, 279–285. doi: 10.1016/j.cyto.2017.05.008
  • Ahmad SF, Nadeem A, Ansari MA, et al. (2017). Upregulation of IL-9 and JAK-STAT signaling pathway in children with autism. Prog Neuropsychopharmacol Biol Psychiatry, 79, 472–480. doi: 10.1016/j.pnpbp.2017.08.002
  • Bonin S, Zanotta N, Sartori A, et al. (2018). Cerebrospinal fluid cytokine expression profile in multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. Immunol Invest, 47, 135–145. doi: 10.1080/08820139.2017.1405978
  • Chen J, Zhao Y, Chu X, et al. (2016). Dectin-1-activated dendritic cells: A potent Th9 cell inducer for tumor immunotherapy. Oncoimmunology, 5, e1238558. doi: 10.1080/2162402X.2016.1238558
  • Cully M. (2017). Inflammatory diseases: an IL-9 solution to inflammation resolution. Nature Reviews Drug Discovery 10.1038/nrd.2017.164 DOI:10.1038/nrd.2017.164, 16, 600–601. doi: 10.1038/nrd.2017.164
  • De Baets M, Stassen M, Losen M, et al. (2003). Immunoregulation in experimental autoimmune myasthenia gravis–about T cells, antibodies, and endplates. Ann N Y Acad Sci, 998, 308–317. http://www.ncbi.nlm.nih.gov/pubmed/14592888. doi: 10.1196/annals.1254.033
  • Elyaman W, Bradshaw EM, Uyttenhove C, et al. (2009). IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A, 106, 12885–12890. doi: 10.1073/pnas.0812530106
  • Elyaman W, Khoury SJ. (2017). Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin Immunopathol, 39, 79–87. doi: 10.1007/s00281-016-0604-y
  • Fabrega E, Lopez-Hoyos M, San Segundo D, et al. (2012). Interleukin-9 in stable liver transplant recipients. Transplant Proc, 44, 1536–1538. doi: 10.1016/j.transproceed.2012.05.014
  • Fujimoto Y, Azuma YT, Matsuo Y, et al. (2017). Interleukin-19 contributes as a protective factor in experimental Th2-mediated colitis. Naunyn-Schmiedeberg’s Archives of Pharmacology, 390, 261–268. doi: 10.1007/s00210-016-1329-0
  • Garo LP, Beynon V, Murugaiyan G. (2017). Flow cytometric assessment of STAT molecules in Th9 cells. Methods in Molecular Biology, 1585, 127–140. doi: 10.1007/978-1-4939-6877-0_10
  • Gerlach K, Hwang Y, Nikolaev A, et al. (2014). TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol, 15, 676–686. doi: 10.1038/ni.2920
  • Goswami R. (2017). Th9 cells: new member of T helper cell family. Methods in Molecular Biology, 1585, 1–19. doi: 10.1007/978-1-4939-6877-0_1
  • Goswami R, Kaplan MH. (2011). A brief history of IL-9. J Immunol, 186, 3283–3288. doi: 10.4049/jimmunol.1003049
  • Gu ZW, Wang YX, Cao ZW. (2017). Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the Treg response in a murine model. Oncotarget, 8, 14314–14324. doi: 10.18632/oncotarget.15177
  • Jabeen R, Goswami R, Awe O, et al. (2013). Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest, 123, 4641–4653 doi: 10.1172/JCI69489
  • Jayam Trouth A, Dabi A, Solieman N, et al. (2012). Myasthenia gravis: a review. Autoimmune Dis, 2012, 874680. doi: 10.1155/2012/874680
  • Jing F, Yang F, Cui F, et al. (2017). Rapamycin alleviates inflammation and muscle weakness, while altering the Treg/Th17 balance in a rat model of myasthenia gravis. Biosci Rep, 37. doi: 10.1042/BSR20170767
  • Kara EE, Comerford I, Bastow CR, et al. (2013). Distinct chemokine receptor axes regulate Th9 cell trafficking to allergic and autoimmune inflammatory sites. J Immunology, 191, 1110–1117. doi: 10.4049/jimmunol.1203089
  • Koch S, Sopel N, Finotto S. (2017). Th9 and other IL-9-producing cells in allergic asthma. Semin Immunopathol, 39, 55–68. doi: 10.1007/s00281-016-0601-1
  • Kortekaas KA, De Vries DK, Reinders ME, et al. (2013). Interleukin-9 release from human kidney grafts and its potential protective role in renal ischemia/reperfusion injury. Inflammation Research: Official Journal European Histamine Research Society [Et Al], 62, 53–59. doi: 10.1007/s00011-012-0550-7
  • Kucinski I, Dinan M, Kolahgar G, et al. (2017). Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun, 8, 136. doi: 10.1038/s41467-017-00145-y
  • Lennon VA, Lindstrom JM, Seybold ME. (1975). Experimental autoimmune myasthenia: A model of myasthenia gravis in rats and guinea pigs. J Exp Med, 141, 1365–1375. http://www.ncbi.nlm.nih.gov/pubmed/1127382 doi: 10.1084/jem.141.6.1365
  • Li H, Rostami AIL-9. (2010). IL-9: basic biology, signaling pathways in CD4+ T cells and implications for autoimmunity. Journal Neuroimmune Pharmacology: Official Journal Society Neuroimmune Pharmacology, 5, 198–209. doi: 10.1007/s11481-009-9186-y
  • Li J, Chen S, Xiao X, et al. (2017). IL-9 and Th9 cells in health and diseases-from tolerance to immunopathology. Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2017.07.004
  • Li XL, Liu Y, Cao LL, et al. (2013). Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines. Mol Cell Neurosci, 56, 85–95. doi: 10.1016/j.mcn.2013.03.005
  • Liao W, Spolski R, Li P, et al. (2014). Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A, 111, 3508–3513. doi: 10.1073/pnas.1301138111
  • Licona-Limon P, Henao-Mejia J, Temann AU, et al. (2013). Th9 cells drive host immunity against gastrointestinal worm infection. Immunity, 39, 744–757. doi: 10.1016/j.immuni.2013.07.020
  • Liu R, Zhou Q, La Cava A, et al. (2010). Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur J Immunol, 40, 1577–1589. doi: 10.1002/eji.200939792
  • Liu Y, Sun J-K, Qi X, et al. (2017). Expression and significance of Th17 and Treg cells in pulmonary infections with gram-negative bacteria. Immunol Invest, 46, 730–741. doi: 10.1080/08820139.2017.1360338
  • Lu Y, Hong S, Li H, et al. (2012). Th9 cells promote antitumor immune responses in vivo. J Clin Invest, 122, 4160–4171. doi: 10.1172/JCI65459
  • Malik S, Dardalhon V, Awasthi A. (2017). Characterization of Th9 cells in the development of EAE and IBD. Methods in Molecular Biology, 1585, 201–216. doi:10.1007/978-1-4939-6877-0_16
  • Mu L, Sun B, Kong Q, et al. (2009). Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology, 128, e826–836. doi: 10.1111/j.1365-2567.2009.03089.x
  • Neurath MF, Finotto SIL-9. (2016). signaling as key driver of chronic inflammation in mucosal immunity. Cytokine Growth Factor Rev, 29, 93–99. doi: 10.1016/j.cytogfr.2016.02.002
  • Pan HF, Leng RX, Li XP, et al. (2013). Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev, 24, 515–522. http://www.ncbi.nlm.nih.gov/pubmed/25215394. doi: 10.1016/j.cytogfr.2013.09.001
  • Pinto MES, Licona-Limon P. (2017). Th9 cells and parasitic inflammation: use of nippostrongylus and schistosoma models. Methods in Molecular Biology, 1585, 223–245. doi: 10.1007/978-1-4939-6877-0_18
  • Pirault J, Polyzos KA, Petri MH, et al. (2017). The inflammatory cytokine interferon-gamma inhibits sortilin-1 expression in hepatocytes via the JAK/STAT pathway. Eur J Immunol, 47, 1918–1924. DOI:10.1002/eji.201646768
  • Poholek AC, Jankovic D, Villarino AV, et al. (2016). IL-10 induces a STAT3-dependent autoregulatory loop in TH2 cells that promotes blimp-1 restriction of cell expansion via antagonism of STAT5 target genes. Sci Immunology, 1, 5. http://www.ncbi.nlm.nih.gov/pubmed/28713870
  • Rauber S, Luber M, Weber S, et al. (2017). Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat Med, 23, 938–944. doi: 10.1038/nm.4373
  • Rivera Vargas T, Humblin E, Vegran F, et al. (2017). TH9 cells in anti-tumor immunity. Semin Immunopathol, 39, 39–46. doi: 10.1007/s00281-016-0599-4
  • Rojas-Zuleta WG, Sanchez EIL-9. (2017). Function, sources, and detection. Methods in Molecular Biology, 1585, 21–35. doi: 10.1007/978-1-4939-6877-0_2
  • Seif F, Khoshmirsafa M, Aazami H, et al. (2017). The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Communication Signaling: CCS, 15, 23. doi: 10.1186/s12964-017-0177-y
  • Stassen M, Schmitt E, Bopp T. (2012). From interleukin-9 to T helper 9 cells. Ann N Y Acad Sci, 1247, 56–68. doi: 10.1111/j.1749-6632.2011.06351.x
  • Ulusoy C, Cavus F, Yilmaz V, et al. (2017). Immunization with recombinantly expressed LRP4 induces experimental autoimmune myasthenia gravis in C57BL/6 mice. Immunol Invest, 46, 490–499. doi: 10.1080/08820139.2017.1299754
  • Vincent A. (2002). Unravelling the pathogenesis of myasthenia gravis. Nat Reviews Immunol, 2, 797–804. doi: 10.1038/nri916
  • Webb LM, Tait Wojno ED (2017). The role of rare innate immune cells in type 2 immune activation against parasitic helminths. Parasitology, 144, 1288–1301. doi: 10.1017/S0031182017000488
  • Xiao X, Balasubramanian S, Liu W, et al. (2012). OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol, 13, 981–990. doi: 10.1038/ni.2390
  • Yang H, Zhang Y, Wu M, et al. (2010). Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflammation Research: Official Journal European Histamine Research Society [Et Al], 59, 197–205. doi: 10.1007/s00011-009-0087-6
  • Yang XO, Zhang H, Kim BS, et al. (2013). The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat Immunol, 14, 732–740. doi: 10.1038/ni.2633
  • Yao X, Kong Q, Xie X, et al. (2014). Neutralization of interleukin-9 ameliorates symptoms of experimental autoimmune myasthenia gravis in rats by decreasing effector T cells and altering humoral responses. Immunology, 143, 396–405. doi: 10.1111/imm.12322
  • Yin JJ, Hu XQ, Mao ZF, et al. (2017). Neutralization of interleukin-9 decreasing mast cells infiltration in experimental autoimmune encephalomyelitis. Chin Med J, 130, 964–971. doi: 10.4103/0366-6999.204110
  • Yuan X, Dou Y, Wu X, et al. (2017). Tetrandrine, an agonist of aryl hydrocarbon receptor, reciprocally modulates the activities of STAT3 and STAT5 to suppress Th17 cell differentiation. J Cell Mol Med, 21, 2172–2183. DOI:10.1111/jcmm.13141
  • Zhan T, Zhang T, Wang Y, et al. (2017). Dynamics of Th9 cells and their potential role in immunopathogenesis of murine schistosomiasis. Parasites & Vectors, 10, 305. doi: 10.1186/s13071-017-2242-1
  • Zhao P, Xiao X, Ghobrial RM, et al. (2013). IL-9 and Th9 cells: progress and challenges. Int Immunol, 25, 547–551. doi: 10.1093/intimm/dxt039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.