Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 48, 2019 - Issue 8
490
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Dynamic Aspects of the Immunoglobulin Structure

References

  • Aalberse RC, Schuurman J. (2002). IgG4 breaking the rules. Immunology, 105, 9–19.
  • Anthony RM, Wermeling F, Ravetch JV. (2012). Novel roles for the IgG Fc glycan. Ann NY Acad Sci, 1253, 170–180. doi:10.1111/j.1749-6632.2011.06305.x
  • Bailey LJ, Sheehy KM, Dominik PK, et al. (2018). Locking the elbow: improved antibody Fab fragments as chaperones for structure determination. J Mol Biol, 430, 337–347. doi:10.1016/j.jmb.2017.12.012
  • Barb AW, Meng L, Gao Z, et al. (2012). NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialyation. Biochemistry, 51, 4618–4626. doi:10.1021/bi300319q
  • Barb AW, Prestegard JH. (2011). NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol, 7, 147–153. doi:10.1038/nchembio.511
  • Bertz M, Buchner J, Rief M. (2013). Mechanical stability of the antibody domain CH3 homodimer in different oxidation states. J Amer Chem Soc, 135, 15085–15091. doi:10.1021/ja405076j
  • Borthakur S, Andrejeva G, McDonne JM. (2011). Basis of the intrinsic flexibility of the Cε3 domain of IgE. Biochemistry, 50, 4608–4614. doi:10.1021/bi200019y
  • Calarese DA, Scanlan CN, Zwick MB, et al. (2003). Antibody domain exchange is an immunoglogical solution to carbohydrate cluster recognition. Science, 300, 2065–2071. doi:10.1126/science.1083182
  • Chen Q, Vieth M, Timm DE, et al. (2017). Reconstruction of 3D structures of MET antibodies from electron microscopy 2D class averages. PLoS One, 12, e0175758. doi:10.1371/journal.pone.0175758
  • Davies AM, Rispens T, Ooijevaar-de Heer P, Aalberse R. (2017). Room temperature structure of human IgG4–fc from crystals analyzed in situ. Mol Immunol, 81, 85–91. doi:10.1016/j.molimm.2016.11.021
  • Davies AM, Sutton BJ. (2015). Human IgG4: a structure perspective. Immunol Rev, 268, 139–159. doi:10.1111/imr.12349
  • Doré KA, Davies AM, Drinkwater N, et al. (2017). Thermal sensitivity and flexibility of the Cε3 domains in immunoglobulin. E Biochim Biophys Acta, 1865(11 Pt A), 1336–1347. doi:10.1016/j.bbapap.2017.08.005
  • Drinkwater N, Cossins BP, Keeble AP, et al. (2014). Human immunoglobulin E flexes between acutely bent and extended conformations. Nat Struct Mol Biol, 21, 397–404. doi:10.1038/nsmb.2795
  • Edmundson AB, Guddat LW, Sahn L, et al. (1994). Structural aspects of conformational changes in ligand binding by antibody fragments. Res Immunol, 145, 56–61.
  • Frank N, Walker RC, Lanzilotta WN, et al. (2014). Immunoglobulin G1 Fc domain motions: implications for Fc engineering. J Mol Biol, 426, 1799–1811. doi:10.1016/j.jmb.2014.01.011
  • Guddat LW, Shan L, Fan Z-C, et al. (1995). Intramolecular signaling upon complexation. FASEB J, 9, 101–106.
  • Harris LJ, Larson SB, Hasel KW, et al. (1992). The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature, 360, 369–372. doi:10.1038/360369a0
  • Harris LJ, Larson SE, Skaletsky E, McPherson A. (1998). Comparison of the conformation of two intact monoclonal antibodies with hinges. Immunol Rev, 163, 35–43.
  • Harwood NE, McDonnell JM. (2007). The intrinsic flexibility of IgE and its role in binding FcεRI. Biomed Pharmacother, 61, 61–67. doi:10.1016/j.biopha.2006.11.004
  • Henry A, McDonnell JM, Ghirlando R, et al. (2000). Conformation of the isolated Cε3 domain of IgE and its complex with the high-affinity receptor, FcεRI. Biochemistry, 39, 7406–7413. doi:10.1021/bi9928391
  • James LC, Roversi P, Tawfik DS. (2003). Antibody multispecificity mediated by conformational diversity. Science, 299, 1362–1367. doi:10.1126/science.1079731
  • Jimenez R, Salazar G, Boaldridge KK, Romesberg FE. (2003). Flexibility and molecular recognition in the immune system. Proc Natl Acad Sci, 100, 92–97. doi:10.1073/pnas.262411399
  • Krapp S, Mimura Y, Jefferis R, et al. (2003). Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol, 325, 979–989.
  • Lu Y, Harding SE, Michaelsen TE, et al. (2007). Solution conformation of wild-type and mutant IgG3 and IgG4 immunoglobulins using crystallohydrodynamics: Possible implications for complement activation. Biophys J, 93, 3733–3744.
  • Nezlin R. (1990). Internal movements in immunoglobulin molecules. Adv Immunol, 48, 1–40.
  • Nezlin R. (1998). Immunoglobulins. Structure and Functions. San Diego: Academic Press.
  • Price NE, Price NC, Kelly SM, McDonnell JM. (2005). The key role of protein flexibility in modulating IgE interactions. J Biol Chem, 280, 2324–2330. doi:10.1074/jbc.M409458200
  • Ramsland PA, Hutchinson AT, Carter FJ. (2015). Therapeutic antibodies: discovery, design and deployment. Mol Immunol, 67, 1–3. doi:10.1016/j.molimm.2015.05.004
  • Remesh SG, Armstrong AA, Mahan AD, et al. (2018). Conformational plasticity of the immunoglobulin Fc domain in solution. Structure, 26, 1–8. doi:10.1016/j.str.2017.12.009
  • Rini JM, Schulz-Gahmen U, Wilson IA. (1992). Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science, 255, 959–965.
  • Rőthlisberger D, Honegger A, Plückthun A. (2005). Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol, 347, 773–789. doi:10.1016/j.jmb.2005.01.053
  • Roux KH. (1999). Immunoglobulin structure and function as revealed by electron microscopy. Intern Arch Allergy Immunol, 120, 85–99. doi:10.1159/000024226
  • Roux KH, Strelets L, Michaelsen TE. (1997). Flexibility of human IgG subclasses. J Immunol, 159, 3372–3382.
  • Ryazantsev S, Tischenko V, Nguyen C, et al. (2013). Three dimensional structure of the human myeloma IgG2. PLoS One, 8, e64076. doi:10.1371/journal.pone.0064076
  • Sandin S, Őfverstedt L-G, Wilkstrőm A-C, et al. (2004). Structure and flexibility of individual immunoglobulin G molecule in solution. Structure, 12, 409–415. doi:10.1016/j.str.2004.02.011
  • Saphire EO, Stanfield RL, Crispin MDM, et al. (2002). Contrasting IgG structures reveal extreme asymmetry and flexibility. J Mol Biol, 31, 9–18. doi:10.1016/S0022-2836(02)00244-9
  • Scapin G, Yang X, Prosise WW, et al. (2015). Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Mol Biol, 22, 953–960. doi:10.1038/nsmb.3129
  • Sela-Culang I, Alon S, Ofran Y. (2012). A systematic comparison of free and bound antibodies reveals binding-related conformational changes. J Immunol, 189, 4890–4899. doi:10.4049/jimmunol.1201493
  • Sheriff S, Chang CY, Jeffrey PD, Bajorath J. (1996). X-ray structure of the uncomplexed anti-tumor antibody BR85 and comparison with its antigen-bound form. J Mol Biol, 259, 938–946. doi:10.1006/jmbi.1996.0371
  • Shields RL, Namenuk AK, Hong K, et al. (2001). High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem, 276, 6591–6604. doi:10.1074/jbc.M009483200
  • Sondermann P, Huber R, Oosthulzen V, Jacob U. (2000). The 3.2-Ǻ crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature, 406, 267–273. doi:10.1038/35018508
  • Sotriffer CA, Rode BM, Varga JM, Liedl КR. (2000). Elbow flexibility and ligand-induced domain rearrangements in antibody Fab NC6.8: large effects of a small hapten. Biophys J, 79, 614–628. doi:10.1016/S0006-3495(00)76320-X
  • Standfield RL, Takimoto-Kamimura M, Rini JM, et al. (1993). Major antigen-induced domain rearrangements in an antibody. Structure, 1, 183–193.
  • Standfield RL, Zemla A, Wilson IA, Rup B. (2006). Antibody elbow angles are influenced by their light chain class. J Mol Biol, 357, 1566–1574. doi:10.1016/j.jmb.2006.01.023
  • Stanfield RL, De Castro C, Marzaioli AM, et al. (2015). Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology, 25, 412–419.
  • Teplyakov A, Zhao Y, Malia TJ, et al. (2013). IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface. Mol Immunol, 56, 131–139. doi:10.1016/j.molimm.2013.03.018
  • Thorpe IF, Brook CL. (2007). Molecular evolution of affinity and flexibility in the immune system. Proc Natl Acad Sci, 104, 8821–8826. doi:10.1073/pnas.0610064104
  • Tiller RT, Tessier PM. (2015). Advances in antibody design. Ann Rev Biomed Eng, 17, 191–216. doi:10.1146/annurev-bioeng-071114-040733
  • Tischenko VM, Zav’yalov VP, Ryazantsev SN. (2017). Human myeloma IgG4 reveals relatively rigid asymmetric Y-like structure with different conformational stability of CH2 domains. Mol Immunol, 92, 199–210. doi:10.1016/j.molimm.2017.10.014
  • Wang W, Ye W, Yu Q, et al. (2013). Conformational selection and induced fit in specific antibody and antigen recognition: SPE7 as a case study. J Phys Chem, 117, 4912–4923. doi:10.1021/jp4010967
  • Wilson IA, Stanfield RL. (1993). Antibody-antigen interactions. Current Opinion Struct Biol, 3, 113–118. doi:10.1016/0959-440X(93)90210-C
  • Wurzburg BA, Jardetzky TS. (2009). Conformational flexibility in immunoglobulin E - c3-4 revealed in multiple crystal forms. J Mol Biol, 393, 176–190. doi:10.1016/j.jmb.2009.08.012
  • Zimmerman J, Oakman EL, Thorpe IF, et al. (2006). Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc Natl Acad Sci, 103, 13722–13727. doi:10.1073/pnas.0603282103
  • Zimmermann J, Romesberg FE, Brooks CL, Thorp I. (2010). Molecular description of flexibility in an antibody combining site. J Phys Chem B, 114, 7359–7370. doi:10.1021/jp906421v

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.