Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 49, 2020 - Issue 4
94
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Antimetabolic Agent 3-Bromopyruvate Exerts Myelopotentiating Action in a Murine Host Bearing a Progressively Growing Ascitic Thymoma

, , , &

References

  • Attia YM, El-Abhar HS, Al Marzabani MM, Shouman SA. (2015). Targeting glycolysis by 3-bromopyruvate improves tamoxifen cytotoxicity of breast cancer cell lines. BMC Cancer, 15, 838. doi:10.1186/s12885-015-1850-4
  • Azevedo-Silva J, Queirós O, Baltazar F, et al. (2016). The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr, 48(4), 349–362. doi:10.1007/s10863-016-9670-z
  • Baltazar F. (2014). Significance of monocarboxylate transporter (MCT) expression in human tumors. Front Pharmacol. doi:10.3389/conf.fphar.2014.61.00004
  • Bian Z, Shi L, Venkataramani M, et al. (2018). Tumor conditions induce bone marrow expansion of granulocytic, but not monocytic, immunosuppressive leukocytes with increased CXCR2 expression in mice. Eur J Immunol, 48(3), 532–542. doi:10.1002/eji.201746976
  • Birsoy K, Wang T, Possemato R, et al. (2013). MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet, 45(1), 104–108. doi:10.1038/ng.2471
  • Buijs M, Wijlemans JW, Kwak BK, et al. (2013). Antiglycolytic therapy combined with an image-guided minimally invasive delivery strategy for the treatment of breast cancer. JVIR, 24(5), 737–743. doi:10.1016/j.jvir.2013.01.013
  • Calviño E, Estañ MC, Sánchez-Martín C, et al. (2014). Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation. J Pharmacol Exp Ther, 348(2), 324–335. doi:10.1124/jpet.113.206714
  • Chang JM, Chung JW, Jae HJ, et al. (2007). Local toxicity of hepatic arterial infusion of hexokinase II inhibitor, 3-bromopyruvate: in vivo investigation in normal rabbit model. Acad Radiol, 14, 85–92. doi:10.1016/j.acra.2006.09.059
  • Cheok CF. (2012). Protecting normal cells from the cytotoxicity of chemotherapy. Cell Cycle, 11(12), 2227–2228. doi:10.4161/cc.20961
  • Choi YK, Park K-G. (2018). Targeting glutamine metabolism for cancer treatment. Biomol Ther, 26(1), 19–28. doi:10.4062/biomolther.2017.178
  • De Palma M, Lewis CE. (2013). Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 23(3), 277–286. doi:10.1016/j.ccr.2013.02.013
  • Ehrke E, Arend C, Dringen R. (2015). 3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes. J Neurosci Res, 93, 1138–1146. doi:10.1002/jnr.23474
  • Elwan N, Salem ML, Kobtan A, et al. (2018). High numbers of myeloid derived suppressor cells in peripheral blood and ascitic fluid of cirrhotic and HCC patients. Immunol Invest, 47, 169–180. doi:10.1080/08820139.2017.1407787
  • Fang H, Wu Y, Huang X, et al. (2011). Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J Biol Chem, 286, 30393–30400. doi:10.1074/jbc.M111.266528
  • Fibbe WE, van Damme J, Billiau A, et al. (1988). Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor. Blood, 71, 430–435.
  • Furuta E, Pai SK, Zhan R, et al. (2008). Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res, 68, 1003–1011. doi:10.1158/0008-5472.CAN-07-2489
  • Ganapathy-Kanniappan S, Geschwind J-FH, Kunjithapatham R, et al. (2009). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res, 29, 4909–4918.
  • Ghirelli C, Hagemann T. (2013). Targeting immunosuppression for cancer therapy. J Clin Invest, 123(6), 2355–2357. doi:10.1172/JCI69999
  • Gong L, Wei Y, Yu X, et al. (2014). 3-Bromopyruvic acid, a hexokinase II inhibitor, is an effective antitumor agent on the hepatoma cells: in vitro and in vivo findings. Anticancer Agents Med Chem, 14. 771–776. doi:10.2174/1871520614666140416105309
  • Hanahan D, Weinberg RA. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674. doi:10.1016/j.cell.2011.02.013
  • Hume DA, Underhill DM, Sweet MJ, et al. (2001). Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state. BMC Immunol, 2. 11. doi:10.1186/1471-2172-2-11
  • Kant S, Kumar A, Singh SM. (2013). Myelopoietic efficacy of orlistat in murine hosts bearing T cell lymphoma: implication in macrophage differentiation and activation. PLoS One, 8, e82396. doi:10.1371/journal.pone.0082396
  • Kant S, Kumar A, Singh SM. (2014). Tumor growth retardation and chemosensitizing action of fatty acid synthase inhibitor orlistat on T cell lymphoma: implication of reconstituted tumor microenvironment and multidrug resistance phenotype. Biochim Biophys Acta, 1840, 294–302. doi:10.1016/j.bbagen.2013.09.020
  • Kumar A, Kant S, Singh SM. (2013a). Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol, 273, 196–208. doi:10.1016/j.taap.2013.09.005
  • Kumar A, Kant S, Singh SM. (2013b). Targeting monocarboxylate transporter by α-cyano-4-hydroxycinnamate modulates apoptosis and cisplatin resistance of Colo205 cells: implication of altered cell survival regulation. Apoptosis Int J Program Cell Death, 18, 1574–1585. doi:10.1007/s10495-013-0894-7
  • Kunjithapatham R, Geschwind J-FH, Rao PP, et al. (2013). Systemic administration of 3-bromopyruvate reveals its interaction with serum proteins in a rat model. BMC Res Notes, 6, 277. doi:10.1186/1756-0500-6-277
  • Lee C-T, Repasky EA. (2012). Opposing roles for heat and heat shock proteins in macrophage functions during inflammation: a function of cell activation state? Front Immunol, 3, 140. doi:10.3389/fimmu.2012.00140
  • Li J, Yan F, Wei F, Ren X. (2017). The role of toll-like receptor 4 in tumor microenvironment. Oncotarget, 8, 66656–66667. doi:10.18632/oncotarget.19105
  • Lis P, Dyląg M, Niedźwiecka K, et al. (2016). The HK2 dependent “Warburg Effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Mol Basel Switz, 21, 1730. doi:10.3390/molecules21121730
  • Liu H, Yan Y, Zhang F, Wu Q. (2019). The immuno-enhancement effects of tubiechong (Eupolyphaga sinensis) lyophilized powder in cyclophosphamide-induced immunosuppressed mice. Immunol Invest, 1–16. doi:10.1080/08820139.2019.1588291
  • Luong M, Zhang Y, Chamberlain T, et al. (2012). Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J Inflamm, 9, 11. doi:10.1186/1476-9255-9-11
  • Mellman I, Coukos G, Dranoff G. (2011). Cancer immunotherapy comes of age. Nature, 480, 480–489. doi:10.1038/nature10673
  • Mirantes C, Passegué E, Pietras EM. (2014). Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp Cell Res, 329, 248–254. doi:10.1016/j.yexcr.2014.08.017
  • Misharin AV, Morales-Nebreda L, Mutlu GM, et al. (2013). Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol, 49, 503–510. doi:10.1165/rcmb.2013-0086M:
  • Mosser DM, Zhang X. (2008). Activation of murine macrophages. Curr Protoc Immunol Chapter, 14(Unit), 14.2. doi:10.1002/0471142735.im1402s83
  • Noy R, Pollard JW. (2014). Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41, 49–61. doi:10.1016/j.immuni.2014.06.010
  • Pan Q, Sun Y, Jin Q, et al. (2016). Hepatotoxicity and nephrotoxicity of 3-bromopyruvate in mice. Acta Cir Bras, 31, 724–729. doi:10.1590/S0102-865020160110000004
  • Parameswaran N, Patial S. (2010). Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr, 20. 87–103. doi:10.1615/CritRevEukarGeneExpr.v20.i2.10
  • Raghavendran HRB, Sathyanath R, Shin J, et al. (2012). Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: ginsenoside Rg1 partially supports myelopoiesis. PLoS One, 7. doi:10.1371/journal.pone.0033733
  • Riddell JR, Wang X-Y, Minderman H, Gollnick SO. (2010). Peroxiredoxin 1 stimulates secretion of pro-inflammatory cytokines by binding to toll-like receptor 4. J Immunol Baltim Md, 1950(184), 1022–1030. doi:10.4049/jimmunol.0901945
  • Shao L, Wang Y, Chang J, et al. (2013). Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury. Transl Cancer Res, 2, 397–411. doi:10.3978/j.issn.2218-676X.2013.07.03
  • Takebe K, Takahashi-Iwanaga H, Iwanaga T. (2011). Intensified expressions of a monocarboxylate transporter in consistently renewing tissues of the mouse. Biomed Res Tokyo Jpn, 32, 293–301.
  • Teicher BA, Linehan WM, Helman LJ. (2012). Targeting cancer metabolism. Clin Cancer Res Off J Am Assoc Cancer Res, 18, 5537–5545. doi:10.1158/1078-0432.CCR-12-2587
  • Tissue expression of SLC16A1 - Summary - The Human Protein Atlas [WWW Document]. (n.d.). URL https://www.proteinatlas.org/ENSG00000155380-SLC16A1/tissue (accessed August 23 2018).
  • Valenti D, Vacca RA, de Bari L. (2015). 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system. J Bioenerg Biomembr, 47, 493–506. doi:10.1007/s10863-015-9631-y
  • Vander Heiden MG. (2011). Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov, 10, 671–684. doi:10.1038/nrd3504
  • Vishvakarma NK, Kumar A, Kumar A, et al. (2012). Myelopotentiating effect of curcumin in tumor-bearing host: role of bone marrow resident macrophages. Toxicol Appl Pharmacol, 263, 111–121. doi:10.1016/j.taap.2012.06.004
  • Vishvakarma NK, Singh SM. (2011a). Mechanisms of tumor growth retardation by modulation of pH regulation in the tumor-microenvironment of a murine T cell lymphoma. Biomed Pharmacother Biomedecine Pharmacother, 65, 27–39. doi:10.1016/j.biopha.2010.06.012
  • Vishvakarma NK, Singh SM. (2011b). Augmentation of myelopoiesis in a murine host bearing a T cell lymphoma following in vivo administration of proton pump inhibitor pantoprazole. Biochimie, 93, 1786–1796. doi:10.1016/j.biochi.2011.06.022
  • Wang C-H, Chou P-C, Chung F-T, et al. (2017). Heat shock protein70 is implicated in modulating NF-κB activation in alveolar macrophages of patients with active pulmonary tuberculosis. Sci Rep, 7, 1214. doi:10.1038/s41598-017-01405-z
  • Weinberg SE, Chandel NS. (2015). Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol, 11, 9–15. doi:10.1038/nchembio.1712
  • Wu C, Xue Y, Wang P, et al. (2014). IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. J Immunol, 193, 3036–3044. doi:10.4049/jimmunol.1302379
  • Xintaropoulou C, Ward C, Wise A, et al. (2015). A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget, 6, 25677–25695. doi:10.18632/oncotarget.4499
  • Yadav S, Kujur PK, Pandey SK, et al. (2017a). Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death. Toxicol Appl Pharmacol, 339, 52–64. doi:10.1016/j.taap.2017.12.004
  • Yadav S, Pandey SK, Goel Y, et al. (2018). Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: implication of niche dependent differential roles of macrophages. Biomed Pharmacother, 99, 970–985. doi:10.1016/j.biopha.2018.01.149
  • Yadav S, Pandey SK, Kumar A, et al. (2017b). Antitumor and chemosensitizing action of 3-bromopyruvate: implication of deregulated metabolism. Chem Biol Interact, 270, 73–89. doi:10.1016/j.cbi.2017.04.015
  • Zhang Q, Pan J, North PE, et al. (2012). Aerosolized 3-bromopyruvate inhibits lung tumorigenesis without causing liver toxicity. Cancer Prev Res Phila Pa, 5, 717–725. doi:10.1158/1940-6207.CAPR-11-0338
  • Zheng L, He M, Long M, et al. (2004). Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. J Immunol, 173, 6319–6326. doi:10.4049/jimmunol.173.10.6319

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.