Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 49, 2020 - Issue 1-2
354
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Increased Non-switched Memory B Cells are Associated with Plasmablasts, Serum IL-6 Levels and Renal Functional Impairments in IgAN Patients

, , , , , & show all

References

  • Agematsu K, Hokibara S, Nagumo H, Komiyama A. 2000. CD27: a memory B-cell marker. Immunol Today. 21:204–06.
  • Chan LY, Leung JC, Tang SC, Choy CB, Lai KN. 2005. Tubular expression of angiotensin II receptors and their regulation in IgA nephropathy. J Am Soc Nephrol. 16:2306–17.
  • Donadio JV, Bergstralh EJ, Grande JP, Rademcher DM. 2002. Proteinuria patterns and their association with subsequent end-stage renal disease in IgA nephropathy. Nephrol Dial Transplant. 17:1197–203.
  • Donadio JV, Grande JP. 2002. IgA nephropathy. N Engl J Med. 347:738–48.
  • Florkowski CM, Chew-Harris JS. 2011. Methods of estimating GFR - different equations including CKD-EPI. Clin Biochem Rev. 32:75–79.
  • Gang W, Peng YM, Liu H, Hou QD, Liu FY, Chen NL, Bi HX. 2011. Expression of CD19(+)CD5(+)B cells and IgA1-positive cells in tonsillar tissues of IgA nephropathy patients. Ren Fail. 33:159–63.
  • Harada K1AY, Kurumatani NIM, Saito Y. 2002. Prognostic value of urinary interleukin 6 in patients with IgA nephropathy: an 8-year follow-up study. Nephron. 92:824–26.
  • Jego G, Robillard N, Puthier D, Amiot M, Accard F, Pineau D, Harousseau JL, Bataille R, Pellat-Deceunynck C. 1999. Reactive plasmacytoses are expansions of plasmablasts retaining the capacity to differentiate into plasma cells. Blood. 94:701–12.
  • Klein U, Rajewsky K, Küppers R. 1998. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 188:1679–89.
  • Krzysztof K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Frank Eitner HJ, Snyder MC, Hou P, Scolari F, Izzi C, et al.. 2012. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 8. Article e1002765.
  • Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Lai FM, Tang SC. 2008. Activation of podocytes by mesangial-derived TNF-alpha: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol. 294:F945–55.
  • Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, Glassock RJ. 2016. IgA nephropathy. Nat Rev Dis Primers. 2:16001.
  • Masahiro M, Benoit M, Hitoshi S, Kensuke J, Masaaki N, Sachiko W, Christian R, Masayuki M, Shozo I, Yasuhiko T, et al.. 2017. Toll-like receptor 9 stimulation induces aberrant expression of a proliferation-inducing ligand by tonsillar germinal center B Cells in IgA nephropathy. J Am Soc Nephrol. 28:1227–38.
  • Oleinika K, Mauri C, Salama AD. 2019. Effector and regulatory B cells in immune-mediated kidney disease. Nat Rev Nephrol. 15:11–26.
  • Pozdzik A, Beukinga I, Gu-Trantien C, Willard-Gallo K, Nortier J, Pradier O. 2016. Circulating (CD3(-)CD19(+)CD20(-)IgD(-)CD27(high)CD38(high)) plasmablasts: A promising cellular biomarker for immune activity for Anti-PLA2R1 related membranous nephropathy. Mediators Inflamm. 7651024.
  • RANIERI ELENA, GESUALDO LORETO, PETRARULO FRANCESCO, SCHENA FRANCESCOP. 1996. Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int. 50:1990–2001.
  • Rodríguez-Bayona B, Ramos-Amaya A, Pérez-Venegas JJ, Rodríguez C, Brieva JA. 2010. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther. 12. Article R108. doi:10.1186/ar3042.
  • Sanguinete MMM, Oliveira PHD, Martins-Filho A, Micheli DC, Tavares-Murta BM, Murta EFC, Nomelini RS. 2017. Serum IL-6 and IL-8 correlate with prognostic factors in ovarian cancer. Immunol Invest. 46:677–88.
  • Seifert M, Przekopowitz M, Taudien S, Lollies A, Ronge V, Drees B, Lindemann M, Hillen U, Engler H, Singer BB, et al.. 2015. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc Natl Acad Sci U S A. 112:E546–E555.
  • Shi Y, Agematsu K, Ochs HD, Sugane K. 2003. Functional analysis of human memory B-cell subpopulations: igD+CD27+ B cells are crucial in secondary immune response by producing high affinity IgM. Clin Immunol. 108:128–37.
  • Simon D, Balogh P, Bognár A, Kellermayer Z, Engelmann P, Németh P, Farkas N, Minier T, Lóránd V, Czirják L, et al.. 2016. Reduced non-switched memory B cell subsets cause imbalance in B cell repertoire in systemic sclerosis. Clin Exp Rheumatol. 34(Suppl 100):30–36.
  • Stangou M, Alexopoulos E, Papagianni A, Pantzaki A, Bantis C, Dovas S, Economidou D, Leontsini M, Memmos D. 2009. Urinary levels of epidermal growth factor, interleukin-6 and monocyte chemoattractant protein-1 may act as predictor markers of renal function outcome in immunoglobulin A nephropathy. Nephrology (Carlton). 14:613–20.
  • Stangou M, Bantis C, Skoularopoulou M, Korelidou L, Kouloukouriotou D, Scina M, Labropoulou IT, Kouri NM, Papagianni A, Efstratiadis G. 2016. Th1, Th2 and Treg/T17 cytokines in two types of proliferative glomerulonephritis. Indian J Nephrol. 26:159–66.
  • Sugiura H, Takei T, Itabashi M, Tsukada M, Moriyama T, Kojima C, Shiohira T, Shimizu A, Tsuruta Y, Amemiya N, et al.. 2011. Effect of single-dose rituximab on primary glomerular diseases. Nephron Clin Pract. 117:c98–105.
  • Sun Y, Liu Z, Liu Y, Li X. 2015. Increased frequencies of memory and activated B cells and follicular helper T cells are positively associated with high levels of activation-induced cytidine deaminase in patients with immunoglobulin A nephropathy. Mol Med Rep. 12:5531–37.
  • Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG, et al.. 2011. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 22:1795–803.
  • Tárnok A, Hambsch J, Chen R, Varro R. 2003. Cytometric bead array to measure six cytokines in twenty-five microliters of serum. Clin Chem. 49:1000–02.
  • Torigoe M, Iwata S, Nakayamada S, Sakata K, Zhang M, Hajime M, Miyazaki Y, Narisawa M, Ishii K, Shibata H, et al.. 2017. Metabolic reprogramming commits differentiation of human CD27+IgD+ B cells to plasmablasts or CD27-IgD- Cells. J Immunol. 199:425–34.
  • Torigoe M, Sakata K, Ishii A, Iwata S, Nakayamada S, Tanaka Y. 2018. Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol. 195:1–7.
  • Wang YY, Zhang L, Zhao PW, Ma L, Li C, Zou HB, Jiang YF. 2014. Functional implications of regulatory B cells in human IgA nephropathy. Scand J Immunol. 79:51–60.
  • Weiwei L, Peng X, Liu Y, Liu H, Liu F, Liyu H, Liu Y, Zhang F, Guo C, Chen G, et al.. 2014. TLR9 and BAFF: their expression in patients with IgA nephropathy. Mol Med Rep. 10:1469–74.
  • Wu G, Peng YM, Liu FY, Xu D, Liu C. 2013. The role of memory B cell in tonsil and peripheral blood in the clinical progression of IgA nephropathy. Hum Immunol. 74:708–12.
  • Zhang B, Xiao-Ling L, Zhao C-R, Pan C-L, Zhang Z. 2018. Interleukin-6 as a predictor of the risk of cardiovascular disease: a meta analysis of prospective epidemiological studies. Immunol Invest. 47:689–99.
  • Zheng N, Wang B, Fan J, Luo N, Kong Q, Ye H, Zhang J, Ming H, Yu X. 2017. Increased abundance of plasmacytoid dendritic cells and interferon-alpha induces plasma cell differentiation in patients of IgA nephropathy. Mediators Inflamm. 4532409.
  • Zhu L, Yin Z, Ju B, Zhang J, Wang Y, Lv X, Hao Z, He L. 2018. Altered frequencies of memory B cells in new-onset systemic lupus erythematosus patients. Clin Rheumatol. 37:205–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.