Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 51, 2022 - Issue 1
172
Views
4
CrossRef citations to date
0
Altmetric
Review

microRNAs Alterations of Myocardium and Brain Ischemia-Reperfusion Injury: Insight to Improve Infarction

&

REFERENCES

  • Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA, et al. 2012. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest. 122(4):1222–32.
  • Babiarz JE, Ravon M, Sridhar S, Ravindran P, Swanson B, Bitter H, Weiser T, Chiao E, Certa U, Kolaja KL. 2012. Determination of the human cardiomyocyte mRNA and miRNA differentiation network by fine-scale profiling. Stem Cells Dev. 21(11):1956–65.
  • Bam M, Yang X, Sen S, Zumbrun EE, Dennis L, Zhang J, Nagarkatti PS, Nagarkatti M. 2018. Characterization of dysregulated miRNA in peripheral blood mononuclear cells from ischemic stroke patients. Mol Neurobiol. 55(2):1419–29.
  • Bhalala OG, Srikanth M, Kessler JA. 2013. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol. 9(6):328–39.
  • Buja LM. 2005. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 14(4):170–75.
  • Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M, Zhang ZG. 2010. MicroRNA-21 protects neurons from ischemic death. FEBS J. 277(20):4299–307.
  • Callis TE, Pandya K, Seok HY, Tang R-H, Tatsuguchi M, Huang Z-P, Chen J-F, Deng Z, Gunn B, Shumate J. 2009. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 119(9):2772–86.
  • Cao C-X, Yang Q-W, Lv F-L, Cui J, Fu H-B, Wang J-Z. 2007. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun. 353(2):509–14.
  • Chai Z, Gong J, Zheng P, Zheng J. 2020. Inhibition of miR-19a-3p decreases cerebral ischemia/reperfusion injury by targeting IGFBP3 in vivo and in vitro. Biol Res. 53(1):1–11.
  • Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, Zen K, Zhang C-Y, Zhang Q. 2014. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis. 5(3):e1132.
  • Chen Y-J, Nguyen HM, Maezawa I, Grossinger EM, Garing AL, Kohler R, Jin L-W, Wulff H. 2016. The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. J Cereb Blood Flow Metab. 36(12):2146–61.
  • Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. 2009. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 12(4):399–408.
  • Dela Peña IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, Borlongan CV. 2015. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metabol. 35(2):338–46.
  • Devasthanam AS, Tomasi TB. 2014. Dicer in immune cell development and function. Immunol Invest. 43(2):182–95.
  • Dharap A, Bowen K, Place R, Li L-C, Vemuganti R. 2009. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 29(4):675–87.
  • Ding S, Liu D, Wang L, Wang G, Zhu Y. 2020. Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 372(1):128–35.
  • Dong L-Y, Chen F, Xu M, Yao L-P, Zhang Y-J, Zhuang Y. 2018. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. Am J Transl Res. 10:1273.
  • Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C. 2009. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 284(43):29514–25.
  • Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, Bezzerri V, Dechecchi MC, Cabrini G, Gambari R. 2014. Expression of microRNA-93 and interleukin-8 during pseudomonas aeruginosa –mediated induction of proinflammatory responses. Am J Respir Cell Mol Biol. 50(6):1144–55.
  • Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. 2012. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Seminars in cardiothoracic and vascular anesthesia. Vol. 16. Los Angeles (CA): SAGE Publications Sage CA. p. 123–32.
  • Gregory PA, Bracken CP, Bert AG, Goodall GJ. 2008. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 7(20):3112–17.
  • Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, et al. 2008. Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 102(9):1025–35.
  • Guo F, Han X, Zhang J, Zhao X, Lou J, Chen H, Huang X, Szele F. 2014. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation via the regulation of miR-25 in a rat model of focal cerebral ischemia. PLoS One. 9(10):e109267.
  • Hackett ML, Duncan JR, Anderson CS, Broad JB, Bonita R. 2000. Health-related quality of life among long-term survivors of stroke: results from the Auckland stroke study, 1991–1992. Stroke. 31(2):440–47.
  • Hallenbeck JM, Dutka AJ. 1990. Background review and current concepts of reperfusion injury. Arch Neurol. 47(11):1245–54.
  • Hu K, Xie -Y-Y, Zhang C, Ouyang D-S, Long H-Y, Sun D-N, Long -L-L, Feng L, Li Y, Xiao B. 2012. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 13(1):115.
  • Huang G, Hao F, Hu X. 2019a. Downregulation of microRNA-155 stimulates sevoflurane-mediated cardioprotection against myocardial ischemia/reperfusion injury by binding to SIRT1 in mice. J Cell Biochem. 120(9):15494–505.
  • Huang Z-Q, Xu W, Wu J-L, Lu X, Chen X-M. 2019b. MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway. Life Sci. 232:116619.
  • Jeyaseelan K, Lim KY, Armugam A. 2008. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 39(3):959–66.
  • Jiang B, Liu Y, Liang P, Li Y, Liu Z, Tong Z, Lv Q, Liu M, Xiao X. 2017. MicroRNA-126a-5p enhances myocardial ischemia-reperfusion injury through suppressing Hspb8 expression. Oncotarget. 8(55):94172–87.
  • Jiang D, Sun X, Wang S, Man H. 2019. Upregulation of miR-874-3p decreases cerebral ischemia/reperfusion injury by directly targeting BMF and BCL2L13. Biomed Pharmacother. 117:108941.
  • Jiang X, Guo C-X, Zeng X-J, Li -H-H, Chen B-X, Du F-H. 2015. A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway. Apoptosis. 20(8):1033–47.
  • Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M, Gumpert AM, Bhimaraj A, Youker KA, Uribe C, et al. 2015. Enhanced cardiac regenerative ability of stem cells after ischemia-reperfusion injury: role of human CD34+ cells deficient in microRNA-377. J Am Coll Cardiol. 66(20):2214–26.
  • Kalra BS, Roy V. 2012. Efficacy of metabolic modulators in ischemic heart disease: an overview. J Clin Pharmacol. 52(3):292–305.
  • Ke Z-P, Xu P, Shi Y, Gao A-M. 2016. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget. 7(20):28796–805.
  • Khanna S, Rink C, Ghoorkhanian R, Gnyawali S, Heigel M, Wijesinghe DS, Chalfant CE, Chan YC, Banerjee J, Huang Y, et al. 2013. Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. J Cereb Blood Flow Metab. 33(8):1197–206.
  • Kim J-K, Jang S-W, Suk K, Lee W-H. 2015. Fascin regulates TLR4/PKC-mediated translational activation through miR-155 and miR-125b, which targets the 3′ untranslated region of TNF-α mRNA. Immunol Invest. 44(3):309–20.
  • Kosik KS. 2006. The neuronal microRNA system. Nat Rev Neurosci. 7(12):911–20.
  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al. 2005. Combinatorial microRNA target predictions. Nat Genet. 37(5):495–500.
  • Le MT, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, O’Day E, Korzh V, Yang H, Lal A, et al. 2011. Conserved regulation of p53 network dosage by microRNA–125b occurs through evolving miRNA–target gene pairs. PLoS Genet. 7(9):e1002242.
  • Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B. 2009. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23(7):862–76.
  • Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75(5):843–54.
  • Lee T, Chang N-C, Lin S-Z. 2017. Inhibition of infarction-induced sympathetic innervation with endothelin receptor antagonism via a PI3K/GSK-3β-dependent pathway. Lab Invest. 97(3):243.
  • Li B, Li R, Zhang C, Bian H-J, Wang F, Xiao J, Liu S-W, Yi W, Zhang M-X, Wang S-X, et al. 2014. MicroRNA-7a/b protects against cardiac myocyte injury in ischemia/reperfusion by targeting poly(ADP-ribose) polymerase. PLoS One. 9(3):e90096.
  • Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, Zhang C. 2017. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Mol Neurobiol. 54(4):2901–21.
  • Liang H, Li F, Li H, Wang R, Du M. 2020. Overexpression of lncRNA HULC attenuates myocardial ischemia/reperfusion injury in rat models and apoptosis of hypoxia/reoxygenation cardiomyocytes via targeting miR-377-5p through NLRP3/caspase‑1/IL‑1β signaling pathway inhibition. Immunol Invest. 1–14. doi:https://doi.org/10.1080/08820139.2020.1791178
  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433(7027):769–73.
  • Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR. 2010. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 30:92–101.
  • Liu H, Li S, Jiang W, Li Y. 2020a. miR-484 protects rat myocardial cells from ischemia-reperfusion injury by inhibiting caspase-3 and caspase-9 during apoptosis. Korean Circ J. 50:250–63.
  • Liu J-Y, Shang J, Mu X-D, Gao Z-Y. 2019a. Protective effect of down-regulated microRNA-27a mediating high thoracic epidural block on myocardial ischemia-reperfusion injury in mice through regulating ABCA1 and NF-κB signaling pathway. Biomed Pharmacother. 112:108606.
  • Liu P, Xie Y, Qian M, Wang S, Li J, Zhang X, Xi S, Pan G, Zhang Z. 2019b. MicroRNA-152-3p negatively regulates ischemia-reperfusion induced cardiomyocyte apoptosis by inhibiting PTEN. Int J Clin Exp Med. 12:239–50.
  • Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, Yan F, Liu X, Yu S, Ji X, et al. 2015a. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke. 46:513–19.
  • Liu Q, Song B, Xu M, An Y, Zhao Y, Yue F. 2020b. miR-25 exerts cardioprotective effect in a rat model of myocardial ischemia-reperfusion injury by targeting high-mobility group box 1. J Chinese Med Assoc. 83:25–31.
  • Liu RR, Li J, Gong JY, Kuang F, Liu JY, Zhang YS, Ma QL, Song CJ, Truax AD, Gao F, et al. 2015b. MicroRNA-141 regulates the expression level of ICAM-1 on endothelium to decrease myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 309:H1303–13.
  • Liu W, Miao Y, Zhang L, Xu X, Luan Q. 2020c. miR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered. 11:189–200.
  • Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG. 2011. MicroRNA profiling in subventricular zone after stroke: miR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One. 6:e23461.
  • Liu Y, Yang L, Yin J, Su D, Pan Z, Li P, Wang X. 2018. MicroRNA-15b deteriorates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by downregulating Bcl-2 and MAPK3. J Investig Med. 66:39–45.
  • Lu H, Buchan RJ, Cook SA. 2010. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 86:410–20.
  • Luo M, Anderson ME. 2013. Mechanisms of altered Ca2+ handling in heart failure. Circ Res. 113:690–708.
  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T. 2007. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 27:435–48.
  • Martinez EC, Lilyanna S, Wang P, Vardy LA, Jiang X, Armugam A, Jeyaseelan K, Richards AM. 2017. MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease. J Mol Cell Cardiol. 112:27–39.
  • Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H. 2006. Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice. Cardiovasc Res. 70:457–65.
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. 1997. A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature. 388:394–97.
  • Millington TM, Madsen JC. 2009. Innate immunity in heart transplantation. Curr Opin Organ Transplant. 14:571–76.
  • Millington TM, Madsen JC. 2010. Innate immunity and cardiac allograft rejection. Kidney Int Suppl. 78:S18–21.
  • Min XL, He M, Shi Y, Xie L, Ma XJ, Cao Y. 2020. miR-18b attenuates cerebral ischemia/reperfusion injury through regulation of ANXA3 and PI3K/Akt signaling pathway. Brain Res Bull. 161:55–64.
  • Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T, Takizawa T. 2007. RT-PCR-based analysis of microRNA (miR-1 and −124) expression in mouse CNS. Brain Res. 1131:37–43.
  • Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR. 2004. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5(9):R68.
  • Moens AL, Claeys MJ, Timmermans JP, Vrints CJ. 2005. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol. 100(2):179–90.
  • Mu J, Cheng X, Zhong S, Chen X, Zhao C. 2020. Neuroprotective effects of miR-532-5p against ischemic stroke. Metab Brain Dis. 35:753–63.
  • Oerlemans MI, van Mil A, Liu J, van Eeuwijk E, den Ouden K, Doevendans P, Sluijter JPG. 2018. Inhibition of miR-223 reduces inflammation but not adverse cardiac remodelling after myocardial ischemia-reperfusion in vivo. Non-coding RNA Invest. 2:15–15.
  • Ouyang Y-B, Lu Y, Yue S, Giffard RG. 2012. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion. 12(2):213–19.
  • Pan L-J, Wang X, Ling Y, Gong H. 2017. miR-24 alleviates cardiomyocyte apoptosis after myocardial infarction via targeting BIM. Eur Rev Med Pharmacol Sci. 21(13):3088–97.
  • Pandi G, Nakka VP, Dharap A, Roopra A, Vemuganti R, Arumugam TV. 2013. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One. 8(3):e58039.
  • Perez-Pinzon M, Koronowski K. 2015. Sirt1 in cerebral ischemia. Brain Circ. 1(1):69–78.
  • Qiu J, Zhou X-Y, Zhou X-G, Cheng R, Liu H-Y, Li Y. 2013. Neuroprotective effects of microRNA-210 on hypoxic-ischemic encephalopathy. Biomed Res Int. 2013:350419.
  • Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M. 2009. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 104(7):879–86.
  • Ren X-P, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan G-C. 2009. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 119(17):2357–66.
  • Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, et al. 2008. Heart disease and stroke statistics--2008 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation. 117(4):e25–146.
  • Ruan Z-F, Xie M, Gui S-J, Lan F, Wan J, Li Y. 2020. miR-370 accelerated cerebral ischemia reperfusion injury via targeting SIRT6 and regulating Nrf2/ ARE signal pathway. Kaohsiung J Med Sci. doi:https://doi.org/10.1002/kjm2.12219
  • Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM. 2012. Dopamine-regulated microRNA miR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol. 32(3):619–32.
  • Schaller B, Graf R. 2004. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab. 24(4):351–71.
  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. 2006. A brain-specific microRNA regulates dendritic spine development. Nature. 439(7074):283–89.
  • Schroen B, Heymans S. 2012. Small but smart--microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res. 93(4):605–13.
  • Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, Jeyaseelan K. 2010. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem. 285:29223–30.
  • Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, et al. 2017. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics. 7(3):664–76.
  • Shi Y, Li K, Xu K, Liu Q. 2020. miR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways. Eur Rev Med Pharmacol Sci. 24(3):1408–19.
  • Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK. 2013. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis. 34(5):1165–72.
  • Sun Y, Gui H, Li Q, Luo Z-M, Zheng M-J, Duan J-L, Liu X. 2013. MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther. 19(10):813–19.
  • Suzuki T, Yamamoto M. 2015. Molecular basis of the Keap1–Nrf2 system. Free Radic Biol Med. 88:93–100.
  • Taganov KD, Boldin MP, Chang K-J, Baltimore D. 2006. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci. 103:12481–86.
  • Takata A, Otsuka M, Kojima K, Yoshikawa T, Kishikawa T, Yoshida H, Koike K. 2011. MicroRNA-22 and microRNA-140 suppress NF-κB activity by regulating the expression of NF-κB coactivators. Biochem Biophys Res Commun. 411(4):826–31.
  • Tang Y, Wang Y, Park K-M, Hu Q, Teoh J-P, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H, et al. 2015. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res. 106(3):387–97.
  • Tao Z, Zhao H, Wang R, Liu P, Yan F, Zhang C, Ji X, Luo Y. 2015. Neuroprotective effect of microRNA-99a against focal cerebral ischemia–reperfusion injury in mice. J Neurol Sci. 355(1–2):113–19.
  • Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et al. 2008. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 456(7224):980–84.
  • Tian F, Yuan C, Yue H. 2018. miR-138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats. Exp Cell Res. 367(2):232–40.
  • Tu Y, Wan L, Fan Y, Wang K, Bu L, Huang T, Cheng Z, Shen B, Salloum F. 2013. Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway. PLoS One. 8(10):e75872.
  • Turer AT, Hill JA. 2010. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 106(3):360–68.
  • Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. 2014. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics. 2014:970607.
  • Vemuganti R. 2010. The microRNAs and stroke: no need to be coded to be counted. Transl Stroke Res. 1(3):158–60.
  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. 2011. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 13:423–33.
  • Wade S, Ohnesorge N, Merrigan S, Biniecka M, McGarry T, Kennedy B, Veale D, Fearon U. 2017. 02.25 Mir125 mediates angiogenic mechanisms in psoriatic arthritis. Ann Rheum Dis. 76:A18.
  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS. 2004. The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis. 27:427–48.
  • Wang C, Pan Y, Cheng B, Chen J, Bai B. 2014a. Identification of conserved and novel microRNAs in cerebral ischemia-reperfusion injury of rat using deep sequencing. J Mol Neurosci. 54:671–83.
  • Wang C, Sun X, Qiu Z, Chen A. 2019a. miR-138-5p exacerbates hypoxia/reperfusion-induced heart injury through the inactivation of SIRT1-PGC-1α. Inflamm Res. 68:867–76.
  • Wang J, Wang A, He H, She X, He Y, Li S, Liu L, Luo T, Huang N, Luo H. 2019b. Trametenolic acid B protects against cerebral ischemia and reperfusion injury through modulation of microRNA-10a and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother. 112:108692.
  • Wang J, Xu Z, Chen X, Li Y, Chen C, Wang C, Zhu J, Wang Z, Chen W, Xiao Z, et al. 2018a. MicroRNA-182-5p attenuates cerebral ischemia-reperfusion injury by targeting Toll-like receptor 4. Biochem Biophys Res Commun. 505:677–84.
  • Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF. 2011. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 17:71–78.
  • Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, Wang M, Dong YH, Li N, Gao JN, et al. 2016a. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 23:1394–405.
  • Wang P, Liang X, Lu Y, Zhao X, Liang J. 2016b. MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem Res. 41:2627–35.
  • Wang X, Chen S, Ni J, Cheng J, Jia J, Zhen X. 2018b. miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis. 9:11.
  • Wang X, Ha T, Hu Y, Lu C, Liu L, Zhang X, Kao R, Kalbfleisch J, Williams D, Li C. 2016c. MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget. 7:86926–36.
  • Wang X, Ha T, Liu L, Zou J, Zhang X, Kalbfleisch J, Gao X, Williams D, Li C. 2013. Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res. 97:432–42.
  • Wang X, Ha T, Zou J, Ren D, Liu L, Zhang X, Kalbfleisch J, Gao X, Williams D, Li C. 2014b. microRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6. Cardiovasc Res. 102:385–95.
  • Wang X, Wang J, Tu T, Iyan Z, Mungun D, Yang Z, Guo Y. 2018c. Remote ischemic postconditioning protects against myocardial ischemia-reperfusion injury by inhibition of the RAGE-HMGB1 pathway. Biomed Res Int. 2018, 4565630. doi:https://doi.org/10.1155/2018/4565630.
  • Wang X, Zhang X, Ren X-P, Chen J, Liu H, Yang J, Medvedovic M, Hu Z, Fan G-C. 2010. microRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury clinical perspective. Circulation. 122:1308–18.
  • Wang Y, Huang J, Ma Y, Tang G, Liu Y, Chen X, Zhang Z, Zeng L, Wang Y, Ouyang Y-B. 2015b. microRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab. 35:1977–84.
  • Wang Y, Men M, Yang W, Zheng H, Xue S. 2015a. miR-31 downregulation protects against cardiac ischemia/reperfusion injury by targeting protein kinase C epsilon (PKCepsilon) directly. Cell Physiol Biochem. 36:179–90.
  • Wang ZK, Liu FF, Wang Y, Jiang XM, Yu XF. 2016d. Let-7a gene knockdown protects against cerebral ischemia/reperfusion injury. Neural Regen Res. 11:262–69.
  • Wu P, Zuo X, Ji A. 2012. Stroke-induced microRNAs: the potential therapeutic role for stroke. Exp Ther Med. 3:571–76.
  • Xie XJ, Fan DM, Xi K, Chen YW, Qi PW, Li QH, Fang L, Ma LG. 2017. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia. Biosci Rep. 37:BSR20170186.
  • Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B. 2007. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 120:3045–52.
  • Xu Z, Sharma M, Gelman A, Hachem R, Mohanakumar T. 2017. Significant role for microRNA-21 affecting toll-like receptor pathway in primary graft dysfunction after human lung transplantation. J Heart Lung Transplant. 36:331–39.
  • Xue X, Wang H, Su J. 2020. Inhibition of miR-122 decreases cerebral ischemia-reperfusion injury by upregulating DJ-1-phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/phosphonosinol-3 kinase (PI3K)/AKT. Med Sci Monitor. 26:e915825–1.
  • Yang J, Chen L, Yang J, Ding J, Li S, Wu H, Zhang J, Fan Z, Dong W, Li X. 2014. microRNA-22 targeting CBP protects against myocardial ischemia–reperfusion injury through anti-apoptosis in rats. Mol Biol Rep. 41:555–61.
  • Yao L, Lv X, Wang X. 2016. microRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury. J Pharmacol Sci. 131:6–12.
  • Yin K-J, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y, Chen YE. 2010a. Peroxisome proliferator-activated receptor δ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci. 30:6398–408.
  • Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE. 2010b. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis. 38:17–26.
  • Yu H, Wu M, Zhao P, Huang Y, Wang W, Yin W. 2015. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. J Cell Biochem. 116:233–41.
  • Yu JY, Chung KH, Deo M, Thompson RC, Turner DL. 2008. microRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res. 314:2618–33.
  • Yuan L, Fan L, Li Q, Cui W, Wang X, Zhang Z. 2019. Inhibition of miR‐181b‐5p protects cardiomyocytes against ischemia/reperfusion injury by targeting AKT3 and PI3KR3. J Cell Biochem. 120:19647–59.
  • Zhang D-Y, Wang B-J, Ma M, Yu K, Zhang Q, Zhang X-W. 2019a. microRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol Biol. 20:17.
  • Zhang E, Chen Q, Wang J, Li D, Wan Z, Ju X. 2020. Protective role of microRNA-27a upregulation and HSP90 silencing against cerebral ischemia-reperfusion injury in rats by activating PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol. 86:106635.
  • Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, Zhao LY, Yang PB, Zhang JS, Tian YF. 2016. microRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway. J Mol Neurosci. 58:507–16.
  • Zhang MJ, Su H, Yan JY, Li N, Song ZY, Wang HJ, Huo LG, Wang F, Ji WS, Qu XJ, et al. 2018a. Chemopreventive effect of Myricetin, a natural occurring compound, on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Biomed Pharmacother. 97:1131–37.
  • Zhang S, Zhang R, Wu F, Li X. 2018b. microRNA-208a regulates H9c2 cells simulated ischemia-reperfusion myocardial injury via targeting CHD9 through Notch/NF-kappa B signal pathways. Int Heart J. 59:580–8.
  • Zhang T, Ma Y, Gao L, Mao C, Zeng H, Wang X, Sun Y, Gu J, Wang Y, Chen K. 2019b. microRNA-146a protects against myocardial ischaemia reperfusion injury by targeting Med1. Cell Mol Biol Lett. 24:1–13.
  • Zhang W, Meng A. 2019. microRNA‑124 expression in the brains of rats during early cerebral ischemia and reperfusion injury is associated with cell apoptosis involving STAT3. Exp Ther Med. 17:2870–76.
  • Zhao GL, Yu LM, Gao WL, Duan WX, Jiang B, Liu XD, Zhang B, Liu ZH, Zhai ME, Jin ZX, et al. 2016. Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin. 37:354–67.
  • Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, Zhang C, Ji X, Luo Y. 2014. microRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res. 1592:65–72.
  • Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, Tao Z, Xu C, Song J, Ji X, et al. 2013. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke. 44:1706–13.
  • Zhao L, Yang XR, Han X. 2019a. microRNA‑146b induces the PI3K/Akt/NF‑κB signaling pathway to reduce vascular inflammation and apoptosis in myocardial infarction by targeting PTEN. Exp Ther Med. 17:1171–81.
  • Zhao Y-B, Zhao J, Zhang L-J, Shan R-G, Sun -Z-Z, Wang K, Chen J-Q, Mu J-X. 2019b. microRNA-370 protects against myocardial ischemia/reperfusion injury in mice following sevoflurane anesthetic preconditioning through PLIN5-dependent PPAR signaling pathway. Biomed Pharmacother. 113:108697.
  • Zheng HW, Wang YL, Lin JX, Li N, Zhao XQ, Liu GF, Liu LP, Jiao Y, Gu WK, Wang DZ. 2012. Circulating micro RNA s as potential risk biomarkers for hematoma enlargement after intracerebral hemorrhage. CNS Neurosci Ther. 18:1003–11.
  • Zhu J, Zhang B, Song W, Zhang X, Wang L, Yin B, Zhu F, Yu C, Li H. 2016. A literature review on the role of miR-370 in disease. Gene Rep. 4:37–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.