Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 51, 2022 - Issue 5
195
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanism of the Fibroblast Growth Factor 23/α-Klotho Axis in Peripheral Blood Mononuclear Cell Inflammation in Alzheimer’s Disease

, , , , , & show all

References

  • Sopjani M, Rinnerthaler M, Kruja J, Dermaku-Sopjani M. 2015. Intracellular signaling of the aging suppressor protein Klotho. Curr Mol Med. 15:27–37.
  • Barnes JW, Duncan D, Helton S, Hutcheson S, Kurundkar D, Logsdon NJ, Locy M, Garth J, Denson R, Farver C, et al. 2019. Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 317(1):L141–L154.
  • Briggs R, Kennelly SP, O'Neill D. 2016. Drug treatments in Alzheimer’s disease. Clin Med (Lond). 16:247–53.
  • Cararo-Lopes MM, Mazucanti CHY, Scavone C, Kawamoto EM, Berwick DC. 2017. The relevance of alpha-KLOTHO to the central nervous system: some key questions. Ageing Res Rev. 36:137–48.
  • Cardoso AL, Fernandes A, Aguilar-Pimentel JA, Hrabě de Angelis M, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, et al. 2018. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 47:214–77.
  • Carrillo-Lopez N, Panizo S, Alonso-Montes C, Román-García P, Rodríguez I, Martínez-Salgado C, Dusso AS, Naves M, Cannata-Andía JB, et al. 2016. Direct inhibition of osteoblastic Wnt pathway by fibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int. 90:77–89.
  • Chen CD, Li Y, Chen AK, Rudy MA, Nasse JS, Zeldich E, Polanco TJ, Abraham CR. 2020. Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein Klotho. PLoS One. 15:e0226382.
  • Chen D, Xie R, Shu B, Landay AL, Wei C, Reiser J, Spagnoli A, Torquati A, Forsyth CB, Keshavarzian A, et al. 2019. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci. 1442(1):48–60.
  • Chen YX, Huang C, Duan ZB, Xu CY, Chen Y. 2019. Klotho/FGF23 axis mediates high phosphate-induced vascular calcification in vascular smooth muscle cells via Wnt7b/beta-catenin pathway. Kaohsiung J Med Sci. 35:393–400.
  • Dounousi E, Torino C, Pizzini P, Cutrupi S, Panuccio V, D’Arrigo G, Abd Elhafeez S, Tripepi G, Mallamaci F, Zoccali C, et al. 2016. Intact FGF23 and alpha-Klotho during acute inflammation/sepsis in CKD patients. Eur J Clin Invest. 46:234–41.
  • Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, et al. 2007. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6:734–46.
  • Erben RG. 2016. Update on FGF23 and Klotho signaling. Mol Cell Endocrinol. 432:56–65.
  • Ersoy FF. 2014. A short story of Klotho and FGF23: a deuce of dark side or the savior? Int Urol Nephrol. 46:577–81.
  • Forloni G, Balducci C, Perry G, Avila J, Tabaton M, Zhu X. 2018. Alzheimer’s disease, oligomers, and inflammation. J Alzheimers Dis. 62:1261–76.
  • Gonzalez-Reimers E, Romero-Acevedo L, Espelosín-Ortega E, Martín-González MC, Quintero-Platt G, Abreu-González P, José de-la-Vega-Prieto M, Martínez-Martínez D, Santolaria-Fernández F, et al. 2018. Soluble Klotho and brain atrophy in alcoholism. Alcohol Alcohol. 53:503–10.
  • Irwin MR, Vitiello MV. 2019. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 18:296–306.
  • Islam BU, Tabrez S. 2017. Management of Alzheimer’s disease-An insight of the enzymatic and other novel potential targets. Int J Biol Macromol. 97:700–09.
  • Jia L, Pina-Crespo J, Li Y. 2019. Restoring Wnt/beta-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. 12:104.
  • Jiang DQ, Wei MD, Wang K-W, Lan Y-X, Zhu N, Wang Y. 2016. Nicotine contributes to the neural stem cells fate against toxicity of microglial-derived factors induced by Abeta via the Wnt/beta-catenin pathway. Int J Neurosci. 126:257–68.
  • Kokras N, Stamouli E, Sotiropoulos I, Katirtzoglou EA, Siarkos KT, Dalagiorgou G, Alexandraki KI, Coulocheri S, Piperi C, Politis AM. 2018. Acetyl cholinesterase inhibitors and cell-derived peripheral inflammatory cytokines in early stages of Alzheimer’s disease. J Clin Psychopharmacol. 38:138–43.
  • Kuro OM. 2019. The Klotho proteins in health and disease. Nat Rev Nephrol. 15:27–44.
  • Lane CA, Hardy J, Schott JM. 2018. Alzheimer’s disease. Eur J Neurol. 25:59–70.
  • Latta CH, Brothers HM, Wilcock DM. 2015. Neuroinflammation in Alzheimer’s disease; A source of heterogeneity and target for personalized therapy. Neuroscience. 302:103–11.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–08.
  • McGrath ER, Himali JJ, Levy D, Conner SC, Pase MP, Abraham CR, Courchesne P, Satizabal CL, Vasan RS, Beiser AS, et al. 2019. Circulating fibroblast growth factor 23 levels and incident dementia: the Framingham heart study. PLoS One. 14:e0213321.
  • Ozben T, Ozben S. 2019. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem. 72:87–89.
  • Ramirez-Serrano CE, Jimenez-Ferrer E, Herrera-Ruiz M, Zamilpa A, Vargas-Villa G, Ramírez-Carreto RJ, Chavarría A, Tortoriello J, Pedraza-Alva G, Pérez-Martínez L, et al. 2019. A Malva parviflora s fraction prevents the deleterious effects resulting from neuroinflammation. Biomed Pharmacother. 118:109349.
  • Rodriguez-Ortiz ME, Diaz-Tocados JM, Muñoz-Castañeda J, Herencia C, Pineda C, Martínez-Moreno J, Montes de Oca A, López-Baltanás R, Alcalá-Díaz J, Ortiz A, et al. 2020. Inflammation both increases and causes resistance to FGF23 in normal and uremic rats. Clin Sci (Lond). 134(1):15–32.
  • Shen H, Guan Q, Zhang X, Yuan C, Tan Z, Zhai L, Hao Y, Gu Y, Han C. 2020. New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog Neuropsychopharmacol Biol Psychiatry. 100:109884.
  • Soria Lopez JA, Gonzalez HM, Léger GC. 2019. Alzheimer’s disease. Handb Clin Neurol. 167:231–55.
  • Tanaka K, Salunya T, Motomiya Y, Motomiya Y, Oyama Y, Yamakuchi M, Maruyama I. 2017. Decreased expression of thrombomodulin in endothelial cells by fibroblast growth factor-23/alpha-Klotho. Ther Apher Dial. 21:395–404.
  • Tapia-Rojas C, Inestrosa NC. 2018. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer’s disease. Neural Regen Res. 13:1705–10.
  • Vallee A, Lecarpentier Y, Guillevin R, Vallée JN. 2017. Effects of cannabidiol interactions with Wnt/beta-catenin pathway and PPARgamma on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin (Shanghai). 49:853–66.
  • Weller J, Budson A. 2018. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 7:1161.
  • Yang Y, Zhang Z. 2020. Microglia and Wnt pathways: prospects for inflammation in Alzheimer’s disease. Front Aging Neurosci. 12:110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.