Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 52, 2023 - Issue 4
166
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Formononetin Inhibits Microglial Inflammatory Response and Contributes to Spinal Cord Injury Repair by Targeting the EGFR/MAPK Pathway

, , , , , , , , & show all

References

  • Azevedo EP, Ledo JH, Barbosa G, Sobrinho M, Diniz L, Fonseca AC, Gomes F, Romao L, Lima FR, Palhano FL, et al. 2013. Activated microglia mediate synapse loss and short-term memory deficits in a mouse model of transthyretin-related oculoleptomeningeal amyloidosis. Cell Death Dis. 4(9):e789.
  • Basso DM, Beattie MS, Bresnahan JC. 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 12(1):1–21.
  • Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. 2010. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain. 133(Pt 2):433–47.
  • Cai L, Liu X, Guo Q, Huang Q, Zhang Q, Cao Z. 2020. MiR-15a attenuates peripheral nerve injury-induced neuropathic pain by targeting AKT3 to regulate autophagy. Genes Genomics. 42(1):77–85.
  • Cheng Y, Xia Z, Han Y, Rong J. 2016. Plant natural product formononetin protects rat cardiomyocyte H9c2 cells against oxygen glucose deprivation and reoxygenation via inhibiting ROS formation and promoting GSK-3beta phosphorylation. Oxid Med Cell Longev. 2016:2060874.
  • Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, et al. 2013. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 32:70–85.
  • Coyoy-Salgado A, Segura-Uribe JJ, Guerra-Araiza C, Orozco-Suarez S, Salgado-Ceballos H, Feria-Romero IA, Gallardo JM, Orozco-Barrios CE. 2019. The importance of natural antioxidants in the treatment of spinal cord injury in animal models: an overview. Oxid Med Cell Longev. 2019:3642491.
  • de Vasconcelos ACP, Morais RP, Novais GB, Barroso DS, Menezes LRO, da Sbs S, da Costa LP, Correa CB, Severino P, Gomes MZ, et al. 2020. In situ photocrosslinkable formulation of nanocomposites based on multi-walled carbon nanotubes and formononetin for potential application in spinal cord injury treatment. Nanomed. 29:102272.
  • Dello Russo C, Cappoli N, Coletta I, Mezzogori D, Paciello F, Pozzoli G, Navarra P, Battaglia A. 2018. The human microglial HMC3 cell line: where do we stand? A systematic literature review. J Neuroinflammation. 15(1):259.
  • Du Y, Li C, Xu S, Yang J, Wan H, He Y. 2022. LC-MS/MS combined with blood-brain dual channel microdialysis for simultaneous determination of active components of astragali radix-safflower combination and neurotransmitters in rats with cerebral ischemia reperfusion injury: application in pharmacokinetic and pharmacodynamic study. Phytomedicine. 106:154432.
  • El-Bakoush A, Olajide OA. 2018. Formononetin inhibits neuroinflammation and increases estrogen receptor beta (ERbeta) protein expression in BV2 microglia. Int Immunopharmacol. 61:325–37.
  • Finegold SM. 1975. Antimicrobial therapy of anaerobic infections. Postgrad Med. 58(3):72–78.
  • Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ. 2010. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res. 107(12):1445–53.
  • Gao ZS, Zhang CJ, Xia N, Tian H, Li DY, Lin JQ, Mei XF, Wu C. 2021. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater. 126:211–23.
  • Gaviria M, Haton H, Sandillon F, Privat A. 2002. A mouse model of acute ischemic spinal cord injury. J Neurotrauma. 19(2):205–21.
  • Goel S, Hidalgo M, Perez-Soler R. 2007. EGFR inhibitor-mediated apoptosis in solid tumors. J Exp Ther Oncol. 6(4):305–20.
  • Gresa-Arribas N, Viéitez C, Dentesano G, Serratosa J, Saura J, Solà C, Tansey MG. 2012. Modelling neuroinflammation in vitro: a tool to test the potential neuroprotective effect of anti-inflammatory agents. PLoS One. 7(9):e45227.
  • He Y, Lv B, Huan Y, Liu B, Li Y, Jia L, Qu C, Wang D, Yu H, Yuan H. 2018a. Zhenbao pill protects against acute spinal cord injury via miR-146a-5p regulating the expression of GPR17. Biosci Rep. 38(1). doi:10.1042/BSR20171132
  • He Y, Li M, Wujisiguleng, Lv B, Huan Y, Liu B, Wang D, Yu H, Zhang L, Shi Z. 2018b. Zhenbao pill reduces treg cell proportion in acute spinal cord injury rats by regulating TUG1/miR-214/HSP27 axis. Biosci Rep. 38(6):BSR20180895.
  • Huan Y, He Y, Liu B, Li Y, Jia L, Qu C, Lv B, Zhang X, Peng H. 2017. Zhenbao pill reduces the percentage of treg cells by inducing HSP27 expression. Biomed Pharmacother = Biomed Pharmacotherapie. 96:818–24.
  • Huh JE, Nam DW, Baek YH, Kang JW, Park DS, Choi DY, Lee JD. 2011. Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways. Int Immunopharmacol. 11(1):46–54.
  • Kalz W, Dalluge P, Marquardt P, Marquardt S. 1990. [A clinical study on oral radiogenic complications in tumor therapy in the head-neck area]. Zahn Mund Kieferheilkd Zentralbl. 78(6):521–23.
  • Koistinaho M, Koistinaho J. 2002. Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia. 40(2):175–83.
  • Le Corre M, Noristani HN, Mestre-Frances N, Saint-Martin GP, Coillot C, Goze-Bac C, Lonjon N, Perrin FE. 2018. A novel translational model of spinal cord injury in nonhuman primate. Neurother. 15(3):751–69.
  • Li JY, Wang JX, Li QH, Li XF, Xiao JP, Li SS, Shen XP, Zhang WD, Shen YH. 2022. Natural borneol enhances the anti-cerebral ischaemia efficacy of formononetin in MCAO/R rats by promoting its delivery in the brain. J Pharm Pharmacol. 74(11):1598–608.
  • Li T, Zhong Y, Tang T, Luo J, Cui H, Fan R, Wang Y, Wang D. 2018. Formononetin induces vasorelaxation in rat thoracic aorta via regulation of the PI3K/PTEN/Akt signaling pathway. Drug Des Devel Ther. 12:3675–84.
  • Li ZW, Zhao JJ, Li SY, Cao TT, Wang Y, Guo Y, Xi GJ. 2021. Blocking the EGFR/p38/NF-kappaB signaling pathway alleviates disruption of BSCB and subsequent inflammation after spinal cord injury. Neurochem Int. 150:105190.
  • Lin ZH, Wang SY, Chen LL, Zhuang JY, Ke QF, Xiao DR, Lin WP. 2017. Methylene blue mitigates acute neuroinflammation after spinal cord injury through inhibiting nlrp3 inflammasome activation in microglia. Front Cell Neurosci. 11:391.
  • Lituma PJ, Woo E, Bf O, Castillo PE, Sibinga NES, Nandi S 2021. Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proc Natl Acad Sci U S A. 118(46):e2115539118. doi: 10.1073/pnas.2115539118.
  • Liu B, Neufeld AH. 2004. Activation of epidermal growth factor receptor causes astrocytes to form cribriform structures. Glia. 46(2):153–68.
  • Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. 2020. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother = Biomed Pharmacotherapie. 127:110136.
  • Mazzoni IE, Kenigsberg RL. 1994. Localization and characterization of epidermal growth-factor receptors in the developing rat medial septal area in culture. Brain Res. 656(1):115–26.
  • Mendiola AS, Cardona AE. 2018. The IL-1beta phenomena in neuroinflammatory diseases. J Neural Transm. 125(5):781–95.
  • Messerli F. 1990. [Calcium blockers: ventricular arrhythmias are significantly reduced. Prof. F. Messerli, New Orleans, on the value of calcium antagonists in the treatment of hypertension. interview by Stefanie Muhlbauer]. Fortschr Med. 108(19):63–64.
  • Nichol ST, Rowe JE, Fitch WM. 1989. Glycoprotein evolution of vesicular stomatitis virus New Jersey. Virology. 168(2):281–91.
  • Orr MB, Gensel JC. 2018. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurother. 15(3):541–53.
  • Panigone S, Hsieh M, Fu M, Persani L, Conti M. 2008. Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol Endocrinol. 22(4):924–36.
  • Qiao F, Atkinson C, Kindy MS, Shunmugavel A, Morgan BP, Song H, Tomlinson S. 2010. The alternative and terminal pathways of complement mediate post-traumatic spinal cord inflammation and injury. Am J Pathol. 177(6):3061–70.
  • Qu WS, Tian DS, Guo ZB, Fang J, Zhang Q, Yu ZY, Xie MJ, Zhang HQ, Lu JG, Wang W. 2012. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation. 9(1):178.
  • Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI. 2003. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol. 5(5):447–53.
  • Roland EH, Volpe JJ. 1989. Effect of maternal cocaine use on the fetus and newborn: review of the literature. Pediatr Neurosci. 15(2):88–94.
  • Rupp R. 2020. Spinal cord lesions. Handb Clin Neurol. 168:51–65.
  • Sugimoto M, Ko R, Goshima H, Koike A, Shibano M, Fujimori K. 2021. Formononetin attenuates H2O2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK-regulated apoptosis in neuronal SH-SY5Y cells. Neurotoxicology. 85:186–200.
  • Tucker TJ, Lumma WC, Lewis SD, Gardell SJ, Lucas BJ, Baskin EP, Woltmann R, Lynch JJ, Lyle EA, Appleby SD, et al. 1997. Potent noncovalent thrombin inhibitors that utilize the unique amino acid D-dicyclohexylalanine in the P3 position. Implications on oral bioavailability and antithrombotic efficacy. J Med Chem. 40(11):1565–69.
  • Wang XS, Guan SY, Liu A, Yue J, Hu LN, Zhang K, Yang LK, Lu L, Tian Z, Zhao MG, et al. 2019. Anxiolytic effects of formononetin in an inflammatory pain mouse model. Mol Brain. 12(1):36.
  • Wu J, Kong M, Lou Y, Li L, Yang C, Xu H, Cui Y, Hao H, Liu Z. 2020. Simultaneous activation of Erk1/2 and akt signaling is critical for formononetin-induced promotion of endothelial function. Front Pharmacol. 11:608518.
  • Xu S, Zhu W, Shao M, Zhang F, Guo J, Xu H, Jiang J, Ma X, Xia X, Zhi X, et al. 2018. Ecto-5’-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice. J Neuroinflammation. 15(1):155.
  • Xu Y, An BY, Xi XB, Li ZW, Li FY. 2016. MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull. 121:233–40.
  • Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M, Honjo M, Takahashi M, Takahashi T, Hirai H, et al. 1998. Growth hormone-induced tyrosine phosphorylation of EGF receptor as an essential element leading to MAP kinase activation and gene expression. Endocr J. 45(Suppl):S27–31.
  • Yan P, Wu X, Liu X, Cai Y, Shao C, Zhu G. 2019. A causal relationship in spinal cord injury rat model between microglia activation and EGFR/MAPK detected by overexpression of MicroRNA-325-3p. J Mol Neurosci. 68(2):181–90.
  • Yao M, Yang L, Wang J, Sun YL, Dun RL, Wang YJ, Cui XJ. 2015. Neurological recovery and antioxidant effects of curcumin for spinal cord injury in the rat: a network meta-analysis and systematic review. J Neurotrauma. 32(6):381–91.
  • Zhang L, Zhang J, You Z. 2018. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 12:306.
  • Zhou HJ, Wang LQ, Xu QS, Fan ZX, Zhu Y, Jiang H, Zheng XJ, Ma YH, Zhan RY. 2016. Downregulation of miR-199b promotes the acute spinal cord injury through IKKbeta-NF-kappaB signaling pathway activating microglial cells. Exp Cell Res. 349(1):60–67.
  • Zhu H, Zou L, Tian J, Lin F, He J, Hou J. 2014. Protective effects of sulphonated formononetin in a rat model of cerebral ischemia and reperfusion injury. Planta Med. 80(4):262–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.