Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 4
117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mogroside Ⅴ Inhibits M1 Polarization and Inflammation of Diabetic Mouse Macrophages via p38 MAPK/NF-Κb Signaling Pathway

, , , , &

References

  • American Diabetes Association. (2013). Diagnosis and classification of diabetes mellitus. Diabetes Care, 36(Suppl 1), S67–74. https://doi.org/10.2337/dc13-S067
  • Cassetta, L., Cassol, E., & Poli, G. (2011). Macrophage polarization in health and disease. Scientific World Journal, 11, 2391–2402. https://doi.org/10.1100/2011/213962
  • Chen, W., Wang, J., Qi, X., & Xie, B. (2007). The antioxidant activities of natural sweeteners, mogrosides, from fruits of siraitia grosvenori. International Journal of Food Sciences and Nutrition, 58(7), 548–556. https://doi.org/10.1080/09637480701336360
  • Cliodhna, E. M., & Cynthia, M. C. (2019). Impact of diabetes mellitus on bone health. International Journal of Molecular Sciences, 20(19), 4873. https://doi.org/10.3390/ijms20194873
  • Coulthard, L. R., White, D. E., Jones, D. L., McDermott, M. F., & Burchill, S. A. (2009). p38(MAPK): Stress responses from molecular mechanisms to therapeutics. Trends in Molecular Medicine, 15(8), 369–379. https://doi.org/10.1016/j.molmed.2009.06.005
  • Cuadrado, A., & Nebreda, A. R. (2010). Mechanisms and functions of p38 MAPK signalling.Biochem. J, 429(3), 403–417. https://doi.org/10.1042/BJ20100323
  • Di, R., Huang, M.-T., & Ho, C.-T. (2011). Anti-inflammatory activities of mogrosides from momordica grosvenori in murine macrophages and a murine ear edema model. Journal of Agricultural and Food Chemistry, 59(13), 7474–7481. https://doi.org/10.1021/jf201207m
  • Dinda, B., Dinda, M., Roy, A., & Dinda, S. (2020). Dietary plant flavonoids in prevention of obesity and diabetes. Advances in Protein Chemistry and Structural Biology, 120, 159–235. https://doi.org/10.1016/bs.apcsb.2019.08.006
  • Gao, D., Jiao, J., Wang, Z., Huang, X., Ni, X., Fang, S., Zhou, Q., Zhu, X., Sun, L., Yang, Z., & Yuan, H. (2022). The roles of cell-cell and organ-organ crosstalk in the type 2 diabetes mellitus associated inflammatory microenvironment. Cytokine and Growth Factor Reviews, 66, 15–25. https://doi.org/10.1016/j.cytogfr.2022.04.002
  • Girard, D., & Vandiedonck, C. (2022). How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications. Frontiers in Cardiovascular Medicine, 9, 991716. https://doi.org/10.3389/fcvm.2022.991716
  • Graves, D. T., Liu, R., Alikhani, M., Al-Mashat, H., & Trackman, P. C. (2006). Diabetes-enhanced inflammation and apoptosis—impact on periodontal pathology. Journal of Dental Research, 85(1), 15–21. https://doi.org/10.1177/154405910608500103
  • He, R., Li, Y., Han, C., Lin, R., Qian, W., & Hou, X. (2019). L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation.Int immunopharmacol. International Immunopharmacology, 73, 379–388. https://doi.org/10.1016/j.intimp.2019.05.013
  • Kawakubo, A., Uchida, K., Miyagi, M., Nakawaki, M., Satoh, M., Sekiguchi, H., Yokozeki, Y., Inoue, G., & Takaso, M. (2020). Investigation of resident and recruited macrophages following disc injury in mice. Journal of Orthopaedic Research, 38(8), 1703–1709. https://doi.org/10.1002/jor.24590
  • Kefaloyianni, E., Gaitanaki, C., & Beis, I. (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cellular Signalling, 18(12), 2238–2251. https://doi.org/10.1016/j.cellsig.2006.05.004
  • Kim, A., Gwon, M.-H., Lee, W., Moon, H.-R., & Yun, J.-M. (2022). Zerumbone suppresses high glucose and LPS-induced inflammation in THP-1-derived macrophages by inhibiting the NF-κB/TLR signaling pathway. Nutrition Research, 100, 58–69. https://doi.org/10.1016/j.nutres.2022.01.002
  • Li, D., Chen, K., Tang, H., Hu, S., Xin, L., Jing, X., He, Q., Wang, S., Song, J., Mei, L., Cannon, R. D., Ji, P., Wang, H., & Chen, T. (2022). A Logic-Based diagnostic and therapeutic hydrogel with multistimuli responsiveness to orchestrate diabetic bone regeneration. Advanced Materials (Deerfield Beach, Fla), 34(11), 2108430. https://doi.org/10.1002/adma.202108430
  • Li, Q., & Verma, I. M. (2002). NF-κB regulation in the immune system. Nature Reviews Immunology, 2(10), 725–734. https://doi.org/10.1038/nri910
  • Li, Y., Zou, L., Li, T., Lai, D., Wu, Y., & Qin, S. (2019). Mogroside V inhibits LPS-induced COX-2 expression/ROS production and overexpression of HO-1 by blocking phosphorylation of AKT1 in RAW264.7 cells. Acta Biochimica et Biophysica Sinica, 51(4), 365–374. https://doi.org/10.1093/abbs/gmz014
  • Lin, W., Li, Q., Zhang, D., Zhang, X., Qi, X., Wang, Q., Chen, Y., Liu, C., Li, H., Zhang, S., Wang, Y., Shao, B., Zhang, L., & Yuan, Q. (2021). Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Research, 9(1), 17. https://doi.org/10.1038/s41413-021-00141-5
  • Liu, H., Qi, X., Yu, K., Lu, A., Lin, K., Zhu, J., Zhang, M., & Sun, Z. (2019). AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food & Function, 10(1), 151–162. https://doi.org/10.1039/C8FO01486H
  • Liu, J., Zhang, Y., Sheng, H., Liang, C., Liu, H., Moran Guerrero, J. A., Lu, Z., Mao, W., Dai, Z., Liu, X., & Zhang, L. (2021). Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus. Frontiers in Immunology, 12, 733808. https://doi.org/10.3389/fimmu.2021.733808
  • Liu, L., Guo, H., Song, A., Huang, J., Zhang, Y., Jin, S., Li, S., Zhang, L., Yang, C., & Yang, P. (2020). Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunology, 21(1), 32. https://doi.org/10.1186/s12865-020-00355-y
  • Liu, Y., Zhang, B., Liu, J., Qiao, C., Xue, N., Lv, H., Li, H., & Choi, J. J. (2021). Mogroside V alleviates lipopolysaccharide-induced neuroinflammation via inhibition of TLR4-MyD88 and activation of AKT/AMPK-Nrf2 signaling pathway. Evidence-Based Complementary and Alternative Medicine, 2021, 1–13. https://doi.org/10.1155/2021/5521519
  • Locati, M., Curtale, G., & Mantovani, A. (2020). Diversity, mechanisms, and significance of macrophage plasticity. Annual Review of Pathology, 15(1), 123–147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718
  • Lontchi-Yimagou, E., Sobngwi, E., Matsha, T. E., & Kengne, A. P. (2013). Diabetes mellitus and inflammation. Current Diabetes Reports, 13(3), 435–444. https://doi.org/10.1007/s11892-013-0375-y
  • Louiselle, A. E., Niemiec, S. M., Zgheib, C., & Liechty, K. W. (2021). Macrophage polarization and diabetic wound healing. Translational Research, 236, 109–116. https://doi.org/10.1016/j.trsl.2021.05.006
  • Lutz, T. A. (2023). Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nature Reviews Endocrinology, 19(6), 350–360. https://doi.org/10.1038/s41574-023-00818-3
  • Matoba, K., Kawanami, D., Tsukamoto, M., Kinoshita, J., Ito, T., Ishizawa, S., Kanazawa, Y., Yokota, T., Murai, N., Matsufuji, S., & Utsunomiya, K. (2014). Rho-kinase regulation of TNF-α-induced nuclear translocation of NF-κB RelA/p65 and M-CSF expression via p38 MAPK in mesangial cells. American Journal of Physiology Renal Physiology, 307(5), F571–F580. https://doi.org/10.1152/ajprenal.00113.2014
  • Miao, M., Niu, Y., Xie, T., Yuan, B., Qing, C., & Lu, S. (2012). Diabetes-impaired wound healing and altered macrophage activation: A possible pathophysiologic correlation. Wound Repair and Regeneration, 20(2), 203–213. https://doi.org/10.1111/j.1524-475X.2012.00772.x
  • Mo, Q., Fu, H., Zhao, D., Zhang, J., Wang, C., Wang, D., & Li, M. (2021). Protective effects of mogroside V on oxidative stress induced by H2O2 in skin fibroblasts. Drug Design, Development and Therapy, 15, 4901–4909. https://doi.org/10.2147/DDDT.S337524
  • Morey, M., O’Gaora, P., Pandit, A., Hélary, C., & Mukhopadhyay, P. (2019). Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. Public Library of Science One, 14(8), e0220577. https://doi.org/10.1371/journal.pone.0220577
  • Nagai, K., Fukushima, T., Oike, H., & Kobori, M. (2012). High glucose increases the expression of proinflammatory cytokines and secretion of TNFα and β-hexosaminidase in human mast cells. European Journal of Pharmacology, 687(1–3), 39–45. https://doi.org/10.1016/j.ejphar.2012.04.038
  • Naguib, G., Al-Mashat, H., Desta, T., & Graves, D. T. (2004). Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation. The Journal of Investigative Dermatology, 123(1), 87–92. https://doi.org/10.1111/j.0022-202X.2004.22711.x
  • Orecchioni, M., Ghosheh, Y., Pramod, A., & Ley, K. (2019). Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages Front Immunol, 10, 1084. https://doi.org/10.3389/fimmu.2019.01084
  • Osawa, Y., Iho, S., Takauji, R., Takatsuka, H., Yamamoto, S., Takahashi, T., Horiguchi, S., Urasaki, Y., Matsuki, T., & Fujieda, S. (2006). Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells. Journal of Immunology, 177(7), 4841–4852. https://doi.org/10.4049/jimmunol.177.7.4841
  • Park, J. S., Jung, S. H., Seo, H., & Kim, H. S. (2007). SB203580 enhances interleukin-1 receptor antagonist gene expression in IFN-gamma-stimulated BV2 microglial cells through a composite nuclear factor-kappaB/PU.1 binding site. Neuroscience Letters, 416(2), 169–174. https://doi.org/10.1016/j.neulet.2007.02.005
  • Pavlou, S., Lindsay, J., Ingram, R., Xu, H., & Chen, M. (2018). Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunology, 19(1), 24. https://doi.org/10.1186/s12865-018-0261-0
  • Pineda-Torra, I., Gage, M., de Juan, A., & Pello, O. M. (2015). Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages. Methods in Molecular Biology, 1339, 101–109. https://doi.org/10.1007/978-1-4939-2929-0_6
  • Qi, L., & Hu, F. B. (2007). Dietary glycemic load, whole grains, and systemic inflammation in diabetes: The epidemiological evidence. Current Opinion in Lipidology, 18(1), 3–8. https://doi.org/10.1097/MOL.0b013e328011c6e0
  • Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.-A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425–6440. https://doi.org/10.1002/jcp.26429
  • Shen, J., Shen, D., Tang, Q., Li, Z., Jin, X., & Li, C. (2022). Mogroside V exerts anti-inflammatory effects on fine particulate matter-induced inflammation in porcine alveolar macrophages. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 80, 105326. https://doi.org/10.1016/j.tiv.2022.105326
  • Shi, D., Zheng, M., Wang, Y., Liu, C., & Chen, S. (2014). Protective effects and mechanisms of mogroside V on LPS-induced acute lung injury in mice. Le Pharmacien biologiste, 52(6), 729–734. https://doi.org/10.3109/13880209.2013.867451
  • Sica, A., & Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation, 122(3), 787–795. https://doi.org/10.1172/JCI59643
  • Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., & Pavkov, M.E. (2022). IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research & Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
  • Sun, X., Sun, Y., Cao, S., & Liu, X. (2023). Effects of N-acetyl-L-cysteine polysulfides on periodontitis in a mouse model. Immunity, Inflammation and Disease, 11(8), e959. https://doi.org/10.1002/iid3.959
  • Takasaki, M., Konoshima, T., Murata, Y., Sugiura, M., Nishino, H., Tokuda, H., Matsumoto, K., Kasai, R., & Yamasaki, K. (2003). Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from momordica grosvenori. Cancer Letters, 198(1), 37–42. https://doi.org/10.1016/S0304-3835(03)00285-4
  • Takemoto, T., Arihara, S., Nakajima, T., & Okuhira, M. (1983). Studies on the constituents of fructus momordicae. II. Structure of sapogenin. YakugakuZasshi, 103(11), 1155–1166. https://doi.org/10.1248/yakushi1947.103.11_1155
  • Torres-Castro, I., Arroyo-Camarena, Ú. D., Martínez-Reyes, C. P., Gómez-Arauz, A. Y., Dueñas-Andrade, Y., Hernández-Ruiz, J., Béjar, Y. L., Zaga-Clavellina, V., Morales-Montor, J., Terrazas, L. I., & Kzhyshkowska, J. (2016). Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunology Letters, 176, 81–89. https://doi.org/10.1016/j.imlet.2016.06.001
  • Wang, B., Chandrasekera, P. C., & Pippin, J. J. (2014). Leptin- and leptin receptor-deficient rodent models: Relevance for human type 2 diabetes. Current Diabetes Reviews, 10(2), 131–145. https://doi.org/10.2174/1573399810666140508121012
  • Wang, N., Liang, H., & Zen, K. (2014). Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Frontiers in Immunology, 5, 614. https://doi.org/10.3389/fimmu.2014.00614
  • Xi, M., Hai, C., Tang, H., Wen, A., Chen, H., Liu, R., Liang, X., & Chen, M. (2010). Antioxidant and antiglycation properties of triterpenoid saponins from aralia taibaiensis traditionally used for treating diabetes mellitus. Redox Report: Communications in Free Radical Research, 15(1), 20–28. https://doi.org/10.1179/174329210X12650506623041
  • Yang, F., Qin, Y., Lv, J., Wang, Y., Che, H., Chen, X., Jiang, Y., Li, A., Sun, Y., Yue, E., Ren, L., Li, Y., Bai, Y., & Wang, L. (2018). Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death & Disease, 9(10), 1000. https://doi.org/10.1038/s41419-018-1029-4
  • Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 209. https://doi.org/10.1038/s41392-020-00312-6
  • Zhang, B., Yang, Y., Yi, J., Zhao, Z., & Ye, R. (2021). Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature‐induced periodontitis. Journal of Periodontal Research, 56(5), 991–1005. https://doi.org/10.1111/jre.12912
  • Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151
  • Zhou, F., Mei, J., Han, X., Li, H., Yang, S., Wang, M., Chu, L., Qiao, H., & Tang, T. (2019). Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta pharmaceutica Sinica B, 9(5), 973–985. https://doi.org/10.1016/j.apsb.2019.01.015
  • Zhou, Y., Hu, Z., Ye, F., Guo, T., Luo, Y., Zhou, W., Qin, D., Tang, Y., Cao, F., Luo, F., & Lin, Q. (2021). Mogroside V exerts anti-inflammatory effect via MAPK-NF-κB/AP-1 and AMPK-PI3K/Akt/mTOR pathways in ulcerative colitis. Journal of Functional Foods, 87, 104807. https://doi.org/10.1016/j.jff.2021.104807
  • Zhou, Y., Zheng, Y., Ebersole, J., & Huang, C. (2009). Insulin secretion stimulating effects of mogroside V and fruit extract of luo han kuo (Siraitia grosvenori Swingle) fruit extract. Yao Xue Xue Bao = Acta Pharmaceutica Sinica, 44(11), 1252–1257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.