Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 4
40
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Upregulation, Functional Association, and Correlated Expressions of TRPV1 and TRPA1 During Telmisartan-Driven Immunosuppression of T Cells

, , , &

References

  • Acharya, T. K., Tiwari, A., Majhi, R. K., & Goswami, C. (2021). TRPM8 channel augments T-cell activation and proliferation. Cell Biology International, 45(1), 198–210. https://doi.org/10.1002/cbin.11483
  • Andersson, D. A., Gentry, C., Moss, S., & Bevan, S. (2008). Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. Journal of Neuroscience, 28(10), 2485–2494. https://doi.org/10.1523/JNEUROSCI.5369-07.2008
  • Arab, H. H., Al-Shorbagy, M. Y., Abdallah, D. M., & Nassar, N. N. (2014). Telmisartan attenuates colon inflammation, oxidative perturbations and apoptosis in a rat model of experimental inflammatory bowel disease. PLoS One, 9(5), e97193. https://doi.org/10.1371/journal.pone.0097193
  • Arif, A. F., Kadam, G. G., & Joshi, C. (2009). Treatment of hypertension: Postmarketing surveillance study results of telmisartan monotherapy, fixed dose combination of telmisartan + hydrochlorothiazide/amlodipine. Journal of the Indian Medical Association, 107(10), 730–733.
  • Benítez-Angeles, M., Morales-Lázaro, S. L., Juárez-González, E., & Rosenbaum, T. (2020). TRPV1: Structure, Endogenous Agonists, and Mechanisms. International Journal of Molecular Sciences, 21(10), 3421. https://doi.org/10.3390/ijms21103421
  • Bertin, S., Aoki-Nonaka, Y., De Jong, P. R., Nohara, L. L., Xu, H., Stanwood, S. R., Srikanth, S., Lee, J., To, K., Abramson, L., Yu, T., Han, T., Touma, R., Li, X., González-Navajas, J. M., Herdman, S., Corr, M., Fu, G., & Jefferies, W. A. (2014). The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nature Immunology, 15(11), 1055–1063. https://doi.org/10.1038/ni.3009
  • Bertin, S., Aoki-Nonaka, Y., Lee, J., de Jong, P. R., Kim, P., Han, T., Yu, T., To, K., Takahashi, N., Boland, B. S., Chang, J. T., Ho, S. B., Herdman, S., Corr, M., Franco, A., Sharma, S., Dong, H., Akopian, A. N., & Raz, E. (2017). The TRPA1 ion channel is expressed in CD4+ t cells and restrains T-cell-mediated colitis through inhibition of TRPV1. Gut, 66(9), 1584–1596. https://doi.org/10.1136/gutjnl-2015-310710
  • Bultynck, G., De Smet, P., Weidema, A. F., Ver Heyen, M., Maes, K., Callewaert, G., Missiaen, L., Parys, J.B., & De Smedt, H. (2000, June). Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms. The Journal of Physiology. Advance online publication. https://pubmed.ncbi.nlm.nih.gov/10856121/
  • De, S., Mamidi, P., Ghosh, S., Keshry, S.S., Mahish, C., Pani, S.S., Laha, E., Ray, A., Datey, A., Chatterjee, S., & Singh, S. (2022). Telmisartan Restricts Chikungunya Virus Infection In Vitro and In Vivo through the AT1/PPAR-γ/MAPKs Pathways. Antimicrobial Agents and Chemotherapy, 66(1). https://doi.org/10.1128/AAC.01489-21
  • Gore, P. N., Badar, V. A., Hardas, M. M., & Bansode, V. J. (2015). Comparative effect of telmisartan vs lisinopril on blood pressure in patients of metabolic syndrome. Endocrine, Metabolic & Immune Disorders Drug Targets, 15(1), 64–70. https://doi.org/10.2174/1871530314666141128154152
  • Harrison, D. G., Guzik, T. J., Lob, H. E., Madhur, M. S., Marvar, P. J., Thabet, S. R., Vinh, A., & Weyand, C. M. (2011). Inflammation, immunity, and hypertension. Hypertension, 57(2), 132–140. Published online. https://doi.org/10.1161/HYPERTENSIONAHA.110.163576
  • Huang, S. S., He, S. L., & Zhang, Y. M. (2016). The effects of telmisartan on the nuclear factor of activated T lymphocytes signalling pathway in hypertensive patients. J Renin-Angiotensin-Aldosterone Syst, 17(2), 0–7. https://doi.org/10.1177/1470320316655005
  • Kalikar, M., Nivangune, K. S., Dakhale, G. N., Bajait, C. S., Sontakke, S. D., Motghare, V. M., & Budania, R. (2017). Efficacy and tolerability of Olmesartan, Telmisartan, and losartan in patients of stage I hypertension: A randomized, open-label study. Journal of Pharmacology & Pharmacotherapeutics, 8(3), 106–111. https://doi.org/10.4103/jpp.JPP_39_17
  • Kumar, P. S., Mukherjee, T., Khamaru, S., Radhakrishnan, A., Kishore, D. J. N., Chawla, S., Sahoo, S. S., & Chattopadhyay, S. (2022). Correction to: Elevation of TRPV1 expression on T-cells during experimental immunosuppression. Journal of Biosciences, 47(4), 47. https://doi.org/10.1007/s12038-022-00305-3
  • Landini, L., Souza Monteiro de Araujo, D., Titiz, M., Geppetti, P., Nassini, R., & De Logu, F. (2022). TRPA1 role in inflammatory disorders: What is known so far? International Journal of Molecular Sciences, 23(9), 4529. https://doi.org/10.3390/ijms23094529
  • Majhi, R. K., Sahoo, S. S., Yadav, M., Pratheek, B. M., Chattopadhyay, S., & Goswami, C. (2015). Functional expression of TRPV channels in T cells and their implications in immune regulation. The FEBS Journal, 282(14), 2661–2681. https://doi.org/10.1111/febs.13306
  • Meneghini, M., Bestard, O., & Grinyo, J. M. (2021). Immunosuppressive drugs modes of action. Best Practice & Research Clinical Gastroenterology, 54–55, 101757. https://doi.org/10.1016/j.bpg.2021.101757
  • Mickle, A. D., Shepherd, A. J., & Mohapatra, D. P. (2016). Nociceptive TRP channels: Sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel), 9(4), 72. https://doi.org/10.3390/ph9040072
  • Morales-Lázaro, S. L., Simon, S. A., & Rosenbaum, T. (2013). The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). The Journal of Physiology, 591(13), 3109–3121. https://doi.org/10.1113/jphysiol.2013.251751
  • Naert, R., López-Requena, A., & Talavera, K. (2021). TRPA1 expression and pathophysiology in Immune Cells. International Journal of Molecular Sciences, 22(21), 11460. https://doi.org/10.3390/ijms222111460
  • Nakano, A., Hattori, Y., Aoki, C., Jojima, T., & Kasai, K. (2009). Telmisartan inhibits cytokine-induced nuclear factor-κB activation independently of the peroxisome proliferator-activated receptor-γ. Hypertension Research, 32(9), 765–769. https://doi.org/10.1038/hr.2009.95
  • Oh-Hora, M., & Rao, A. (2008). Calcium signaling in lymphocytes. Current Opinion in Immunology, 20(3), 250–258. https://doi.org/10.1016/J.COI.2008.04.004
  • Okunuki, Y., Usui, Y., Nagai, N., Kezuka, T., Ishida, S., Takeuchi, M., & Goto, H. (2009). Suppression of experimental autoimmune uveitis by angiotensin II type 1 receptor blocker telmisartan. Investigative Opthalmology & Visual Science, 50(5), 2255–2261. https://doi.org/10.1167/iovs.08-2649
  • Omari, S. A., Adams, M. J., & Geraghty, D. P. (2017). TRPV1 Channels in Immune Cells and Hematological Malignancies. Advances in Pharmacology (San Diego, California), 79, 173–198. https://doi.org/10.1016/bs.apha.2017.01.002
  • Parlakpinar, H., & Gunata, M. (2021). Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacology and Immunotoxicology, 43(6), 651–665. https://doi.org/10.1080/08923973.2021.1966033
  • Racioppi, L., Nelson, E. R., Huang, W., Mukherjee, D., Lawrence, S. A., Lento, W., Masci, A. M., Jiao, Y., Park, S., York, B., Liu, Y., Baek, A. E., Drewry, D. H., Zuercher, W. J., Bertani, F. R., Businaro, L., Geradts, J., Hall, A., & Chang, C.-Y. (2019). CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10424-5
  • Radhakrishnan, A., Mukherjee, T., Mahish, C., Kumar, P. S., Goswami, C., & Chattopadhyay, S. (2023). TRPA1 activation and Hsp90 inhibition synergistically downregulate macrophage activation and inflammatory responses in vitro. BMC Immunology, 24(1), 16. https://doi.org/10.1186/s12865-023-00549-0
  • Sahoo, S. S. S., Majhi, R. K. K., Tiwari, A., Acharya, T., Kumar, P., Saha, S., Kumar, A., Goswami, C., & Chattopadhyay, S. (2019). Transient receptor potential ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. Bioscience Reports, 39(9), BSR20191437/220415. https://doi.org/10.1042/BSR20191437
  • Sahoo, S. S., Pratheek, B. M., Meena, V. S., Nayak, T. K., Kumar, P. S., Bandyopadhyay, S., Maiti, P. K., & Chattopadhyay, S. (2018). VIPER regulates naive T cell activation and effector responses: Implication in TLR4 associated acute stage T cell responses. Scientific Reports, 8(1), 7118. https://doi.org/10.1038/s41598-018-25549-8
  • Samanta, A., Hughes, T. E. T., & Moiseenkova-Bell, V. Y. (2018). Transient Receptor Potential (TRP) Channels. Sub-Cellular Biochemistry, 87, 141–165. https://doi.org/10.1007/978-981-10-7757-9_6
  • Shin, D. W., Pan, Z., Bandyopadhyay, A., Bhat, M. B., Kim, D. H., & Ma, J. (2002). Ca(2+)-dependent interaction between FKBP12 and calcineurin regulates activity of the Ca(2+) release channel in skeletal muscle. Biophysical Journal, 83(5), 2539–2549. https://doi.org/10.1016/S0006-3495(02)75265-X
  • Stucky, C. L., Dubin, A. E., Jeske, N. A., Malin, S. A., McKemy, D. D., & Story, G. M. (2009). Roles of transient receptor potential channels in pain. Brain Research Reviews, 60(1), 2–23. https://doi.org/10.1016/j.brainresrev.2008.12.018
  • Trevisani, M., Siemens, J., Materazzi, S., Bautista, D. M., Nassini, R., Campi, B., Imamachi, N., Andrè, E., Patacchini, R., Cottrell, G. S., Gatti, R., Basbaum, A. I., Bunnett, N. W., Julius, D., & Geppetti, P. (2007). 4-hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proceedings of the National Academy of Sciences, 104(33), 13519–13524. https://doi.org/10.1073/pnas.0705923104
  • Vig, M., & Kinet, J. P. (2009). Calcium signaling in immune cells. Nature Immunology, 10(1), 21–27. https://doi.org/10.1038/ni.f.220
  • Zhang, M., Ma, Y., Ye, X., Zhang, N., Pan, L., & Wang, B. (2023). TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01464-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.