Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 4
46
Views
0
CrossRef citations to date
0
Altmetric
Method

Betulinic Acid Potentiates Mast Cell Degranulation by Compromising Cell Membrane Integrity and Without Involving Fcεri Receptors

&

References

  • Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., & Hezmee, M. N. M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 11(5), 627–635. https://doi.org/10.14202/vetworld.2018.627-635
  • Aiken, C., & Chen, C. H. (2005). Betulinic acid derivatives as HIV-1 antivirals. Trends in Molecular Medicine, 11(1), 31–6. https://doi.org/10.1016/j.molmed.2004.11.001
  • Amin, K. (2012). The role of mast cells in allergic inflammation. Respiratory Medicine, 106(1), 9–14. https://doi.org/10.1016/j.rmed.2011.09.007
  • Avila, M., & Gonzalez-Espinosa, C. (2011). Signaling through Toll-like receptor 4 and mast cell-dependent innate immunity responses. IUBMB Life, 63(10), 873–880. https://doi.org/10.1002/iub.555
  • Boyden, S. (1962). The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. Journal of Experimental Medicine, 115(3), 453–66. https://doi.org/10.1084/jem.115.3.453
  • Bulfone-Paus, S., Nilsson, G., Draber, P., Blank, U., & Levi-Schaffer, F. (2017). Positive and negative signals in mast cell activation. Trends in Immunology, 38(9), 657–667. https://doi.org/10.1016/j.it.2017.01.008
  • Costa, J. F., Barbosa-Filho, J. M., de Azevedo Maia, G. L., Guimarães, E. T., Meira, C. S., Ribeiro-dos-Santos, R., Pontes de Carvalho, L. C., & Soares, M. B. P. (2014). Potent anti-inflammatory activity of betulinic acid treatment in a model of lethal endotoxemia. International Immunopharmacology, 23(2), 469–474. https://doi.org/10.1016/j.intimp.2014.09.021
  • Dang, Z., Lai, W., Qian, K., Ho, P., Lee, K.-H., Chen, C.-H., & Huang, L. (2009). Betulinic acid derivatives as human immunodeficiency virus type 2 (HIV-2) inhibitors. Journal of Medicinal Chemistry, 52(23), 7887–7891. https://doi.org/10.1021/jm9004253
  • Dhingra, A. K., Chopra, B., Dass, R., & Mittal, S. (2015). An update on anti-inflammatory compounds: A review. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 14(2), 81–97. https://doi.org/10.2174/1871523014666150514102027
  • Draberova, L. (1990). Cyclosporin a inhibits rat mast cell activation. European Journal of Immunology, 20(7), 1469–73. https://doi.org/10.1002/eji.1830200710
  • Draberova, L., Bugajev, V., Potuckova, L., Halova, I., Bambouskova, M., Polakovicova, I., Xavier, R. J., Seed, B., & Draber, P. (2014). Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Molecular and Cellular Biology, 34(23), 4285–4300. https://doi.org/10.1128/MCB.00983-14
  • Echtenacher, B., Mannel, D. N., & Hultner, L. (1996). Critical protective role of mast cells in a model of acute septic peritonitis. Nature, 381(6577), 75–77. https://doi.org/10.1038/381075a0
  • Ekuadzi, E., Biney, R. P., Benneh, C. K., Osei Amankwaa, B., & Jato, J. (2018). Antiinflammatory properties of betulinic acid and xylopic acid in the carrageenan-induced pleurisy model of lung inflammation in mice. Phytotherapy Research: PTR, 32(3), 480–487. https://doi.org/10.1002/ptr.5993
  • Erdei, A., Andrásfalvy, M., Péterfy, H., Tóth, G., & Pecht, I. (2004). Regulation of mast cell activation by complement-derived peptides. Immunology Letters, 92(1–2), 39–42. https://doi.org/10.1016/j.imlet.2003.11.019
  • Finn, D. F., & Walsh, J. J. (2013). Twenty-first century mast cell stabilizers. British Journal of Pharmacology, 170(1), 23–37. https://doi.org/10.1111/bph.12138
  • Fontanay, S., Grare, M., Mayer, J., Finance, C., & Duval, R. E. (2008). Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. Journal of Ethnopharmacology, 120(2), 272–276. https://doi.org/10.1016/j.jep.2008.09.001
  • Fulda, S., & Kroemer, G. (2009). Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discovery Today, 14(17–18), 885–90. https://doi.org/10.1016/j.drudis.2009.05.015
  • Furst, R., & Zundorf, I. (2014). Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators of Inflammation, 2014, 146832. https://doi.org/10.1155/2014/146832
  • Galli, S. J., & Wershil, B. K. (1996). The two faces of the mast cell. Nature, 381(6577), 21–22. https://doi.org/10.1038/381021a0
  • Grymel, M., Zawojak, M., & Adamek, J. (2019). Triphenylphosphonium analogues of betulin and betulinic acid with biological activity: A comprehensive review. Journal of Natural Products, 82(6), 1719–1730. https://doi.org/10.1021/acs.jnatprod.8b00830
  • Hallgren, J., & Gurish, M. F. (2011). Mast cell progenitor trafficking and maturation. Advances in Experimental Medicine and Biology, 716, 14–28.
  • Halova, I., Draberova, L., & Draber, P. (2012). Mast cell chemotaxis – chemoattractants and signaling pathways. Frontiers in Immunology, 3, 119. https://doi.org/10.3389/fimmu.2012.00119
  • Hibbs, M. L., Harder, K. W., Armes, J., Kountouri, N., Quilici, C., Casagranda, F., Dunn, A. R., & Tarlinton, D. M. (2002). Sustained activation of Lyn tyrosine kinase in vivo leads to autoimmunity. Journal of Experimental Medicine, 196(12), 1593–1604. https://doi.org/10.1084/jem.20020515
  • Horakova, H., Polakovičová, I., Shaik, G. M., Eitler, J., Bugajev, V., Dráberová, L., & Dráber, P. (2011). 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnology, 11(1), 41. https://doi.org/10.1186/1472-6750-11-41
  • Huber, M., Hughes, M. R., & Krystal, G. (2000). Thapsigargin-induced degranulation of mast cells is dependent on transient activation of phosphatidylinositol-3 kinase. Journal of Immunology, 165(1), 124–33. https://doi.org/10.4049/jimmunol.165.1.124
  • Kambayashi, T., & Koretzky, G. A. (2007). Proximal signaling events in Fc epsilon RI-mediated mast cell activation. Journal of Allergy and Clinical Immunology, 119(3), 544–52; quiz 553–4. https://doi.org/10.1016/j.jaci.2007.01.017
  • Kashiwada, Y., Hashimoto, F., Cosentino, L. M., Chen, C.-H., Garrett, P. E., & Lee, K.-H. (1996). Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. Journal of Medicinal Chemistry, 39(5), 1016–1017. https://doi.org/10.1021/jm950922q
  • Kim, K. S., Lee, D.-S., Kim, D.-C., Yoon, C.-S., Ko, W., Oh, H., & Kim, Y.-C. (2016). Anti-inflammatory effects and mechanisms of action of coussaric and betulinic acids isolated from diospyros kaki in lipopolysaccharide-stimulated RAW 264.7 macrophages. Molecules, 21(9), 1206. https://doi.org/10.3390/molecules21091206
  • Kitamura, Y., Oboki, K., & Ito, A. (2007). Development of mast cells. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 83(6), 164–74. https://doi.org/10.2183/pjab.83.164
  • Kovarova, M., Tolar, P., Arudchandran, R., Dráberová, L., Rivera, J., & Dráber, P. (2001). Structure-function analysis of Lyn Kinase association with lipid rafts and initiation of early signaling events after Fcɛ receptor I aggregation. Molecular and Cellular Biology, 21(24), 8318–8328. https://doi.org/10.1128/MCB.21.24.8318-8328.2001
  • Krasutsky, P. A. (2006). Birch bark research and development. Natural Product Reports, 23(6), 919–42. https://doi.org/10.1039/b606816b
  • Kumar, P., Bhadauria, A. S., Singh, A. K., & Saha, S. (2018). Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sciences, 209, 24–33. https://doi.org/10.1016/j.lfs.2018.07.056
  • Lee, S. Y., Kim, H. H., & Park, S. U. (2015). Recent studies on betulinic acid and its biological and pharmacological activity. Excli Journal, 14, 199–203. https://doi.org/10.17179/excli2015-150
  • Malbec, O., & Daeron, M. (2007). The mast cell IgG receptors and their roles in tissue inflammation. Immunological Reviews, 217(1), 206–21. https://doi.org/10.1111/j.1600-065X.2007.00510.x
  • Martins, W. K., Gomide, A. B., Costa, É. T., Junqueira, H. C., Stolf, B. S., Itri, R., & Baptista, M. S. (2017). Membrane damage by betulinic acid provides insights into cellular aging. Biochimica Et Biophysica Acta-General Subjects, 1861(1), 3129–3143. https://doi.org/10.1016/j.bbagen.2016.10.018
  • Moon, T. C., Befus, A. D., & Kulka, M. (2014). Mast cell mediators: Their differential release and the secretory pathways involved. Frontiers in Immunology, 5, 569. https://doi.org/10.3389/fimmu.2014.00569
  • Oloyede, H. O. B., Ajiboye, H. O., Salawu, M. O., & Ajiboye, T. O. (2017). Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid. Microbial Pathogenesis, 111, 338–344. https://doi.org/10.1016/j.micpath.2017.08.012
  • Redegeld, F. A., Yu, Y., Kumari, S., Charles, N., & Blank, U. (2018). Non-IgE mediated mast cell activation. Immunological Reviews, 282(1), 87–113. https://doi.org/10.1111/imr.12629
  • Revelo, N. H., Ter Beest, M., & van den Bogaart, G. (2020). Membrane trafficking as an active regulator of constitutively secreted cytokines. Journal of Cell Science, 133(5). https://doi.org/10.1242/jcs.234781
  • Rodewald, H. R., Dessing, M., Dvorak, A. M., & Galli, S. J. (1996). Identification of a committed precursor for the mast cell lineage. Science, 271(5250), 818–822. https://doi.org/10.1126/science.271.5250.818
  • Rudolph, A. K., Burrows, P. D., & Wabl, M. R. (1981). Thirteen hybridomas secreting hapten-specific immunoglobulin E from mice with Iga or Igb heavy chain haplotype. European Journal of Immunology, 11(6), 527–9. https://doi.org/10.1002/eji.1830110617
  • Saitoh, S., Arudchandran, R., Manetz, T. S., Zhang, W., Sommers, C. L., Love, P. E., Rivera, J., & Samelson, L. E. (2000). LAT is essential for FcεRI-mediated mast cell activation. Immunity, 12(5), 525–535. https://doi.org/10.1016/S1074-7613(00)80204-6
  • Schmitt-Verhulst, A. M., Pettinelli, C. B., Henkart, P. A., Lunney, J. K., & Shearer, G. M. (1978). H-2-restricted cytotoxic effectors generated in vitro by the addition of trinitrophenyl-conjugated soluble proteins. Journal of Experimental Medicine, 147(2), 352–368. https://doi.org/10.1084/jem.147.2.352
  • Shai, L. J., McGaw, L. J., Aderogba, M. A., Mdee, L. K., & Eloff, J. N. (2008). Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm. leaves. Journal of Ethnopharmacology, 119(2), 238–244. https://doi.org/10.1016/j.jep.2008.06.036
  • Shaik, G. M., Draberova, L., Cernohouzova, S., Tumova, M., Bugajev, V., & Draber, P. (2022). Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions. Journal of Biological Chemistry, 298(11), 102497. https://doi.org/10.1016/j.jbc.2022.102497
  • Siebenhaar, F., Redegeld, F. A., Bischoff, S. C., Gibbs, B. F., & Maurer, M. (2018). Mast cells as drivers of disease and therapeutic targets. Trends in Immunology, 39(2), 151–162. https://doi.org/10.1016/j.it.2017.10.005
  • Siraganian, R. P., de Castro, R. O., Barbu, E. A., & Zhang, J. (2010). Mast cell signaling: The role of protein tyrosine kinase Syk, its activation and screening methods for new pathway participants. Febs Letters, 584(24), 4933–4940. https://doi.org/10.1016/j.febslet.2010.08.006
  • Surviladze, Z., Dráberová, L., Kovářová, M., Boubelík, M., & Dráber, P. (2001). Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. European Journal of Immunology, 31(1), 1–10. https://doi.org/10.1002/1521-4141(200101)31:1<1:AID-IMMU1>3.0.CO;2-W
  • Takada, Y., & Aggarwal, B. B. (2003). Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: Abrogation of cyclooxygenase-2 and matrix metalloprotease-9. Journal of Immunology, 171(6), 3278–3286. https://doi.org/10.4049/jimmunol.171.6.3278
  • Theoharides, T. C., Alysandratos, K.-D., Angelidou, A., Delivanis, D.-A., Sismanopoulos, N., Zhang, B., Asadi, S., Vasiadi, M., Weng, Z., Miniati, A., & Kalogeromitros, D. (2012). Mast cells and inflammation. Biochimica et biophysica acta, 1822(1), 21–33. https://doi.org/10.1016/j.bbadis.2010.12.014
  • Tolar, P., Draberova, L., & Draber, P. (1997). Protein tyrosine kinase syk is involved in thy-1 signaling in rat basophilic leukemia cells. European Journal of Immunology, 27(12), 3389–97. https://doi.org/10.1002/eji.1830271238
  • Turner, H., & Kinet, J. P. (1999). Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature, 402(6760 Suppl), B24–30. https://doi.org/10.1038/35037021
  • Wang, B. H., & Polya, G. M. (1996). Selective inhibition of cyclic AMP-dependent protein kinase by amphiphilic triterpenoids and related compounds. Phytochemistry, 41(1), 55–63. https://doi.org/10.1016/0031-9422(95)00583-8
  • Xu, T., Pang, Q., Wang, Y., & Yan, X. (2017). Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. International Journal of Molecular Medicine, 40(6), 1669–1678. https://doi.org/10.3892/ijmm.2017.3163
  • Yoon, J. J., Lee, Y. J., Kim, J. S., Kang, D. G., & Lee, H. S. (2010). Protective role of betulinic acid on TNF-α-induced cell adhesion molecules in vascular endothelial cells. Biochemical and Biophysical Research Communications, 391(1), 96–101. https://doi.org/10.1016/j.bbrc.2009.11.009
  • Zhang, D. M., Xu, H.-G., Wang, L., Li, Y.-J., Sun, P.-H., Wu, X.-M., Wang, G.-J., Chen, W.-M., & Ye, W.-C. (2015). Betulinic acid and its derivatives as potential antitumor agents. Medicinal Research Reviews, 35(6), 1127–1155. https://doi.org/10.1002/med.21353
  • Zuco, V., Supino, R., Righetti, S. C., Cleris, L., Marchesi, E., Gambacorti-Passerini, C., & Formelli, F. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 175(1), 17–25. https://doi.org/10.1016/S0304-3835(01)00718-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.