Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 4
148
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Immune Dysregulation in Chronic Obstructive Pulmonary Disease

&

References

  • Agarwal, A. R., Kadam, S., Brahme, A., Agrawal, M., Apte, K., Narke, G., Kekan, K., Madas, S., & Salvi, S. (2019). Systemic immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD). Respiratory Research, 20(1). https://doi.org/10.1186/s12931-019-1139-2
  • Agudelo, C. W., Samaha, G., & Garcia-Arcos, I. (2020). Alveolar lipids in pulmonary disease. A review. Lipids in Health and Disease, 19(1). https://doi.org/10.1186/s12944-020-01278-8
  • Agustí, A., Celli, B. R., Criner, G. J., Halpin, D., Anzueto, A., Barnes, P., Bourbeau, J., Han, M. K., Martinez, F. J., Montes de Oca, M., Mortimer, K., Papi, A., Pavord, I., Roche, N., Salvi, S., Sin, D. D., Singh, D., Stockley, R., … Wedzicha, J. A. (2023). Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. European Respiratory Journal, 61(4), 2300239. https://doi.org/10.1183/13993003.00239-2023
  • Ahmad, A., Shameem, M., & Husain, Q. (2013). Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. The International Journal of Tuberculosis and Lung Disease, 17(8), 1104–1109. https://doi.org/10.5588/ijtld.12.0512
  • Albano, G. D., Gagliardo, R. P., Montalbano, A. M., & Profita, M. (2022). Overview of the mechanisms of oxidative stress: Impact in inflammation of the airway diseases. Antioxidants, 11(11), 2237. https://doi.org/10.3390/antiox11112237
  • Alcázar-Navarrete, B., Ruiz Rodríguez, O., Baena, P. C., Romero Palacios, P. J., & Agusti, A. (2018). Persistently elevated exhaled nitric oxide fraction is associated with increased risk of exacerbation in COPD. The European Respiratory Journal, 51(1), 1701457. https://doi.org/10.1183/13993003.01457-2017
  • Anthonisen, N. R. (2005). The effects of a smoking cessation intervention on 14.5-year mortality. Annals of Internal Medicine, 143(8), 615. https://doi.org/10.7326/0003-4819-143-8-200510180-00019
  • Aoshiba, K., Tamaoki, J., & Nagai, A. (2001). Acute cigarette smoke exposure induces apoptosis of alveolar macrophages. American Journal of Physiology-Lung Cellular and Molecular Physiology, 281(6), L1392–L1401. https://doi.org/10.1152/ajplung.2001.281.6.L1392
  • Babusyte, A., Stravinskaite, K., Jeroch, J., Lötvall, J., Sakalauskas, R., & Sitkauskiene, B. (2007). Patterns of airway inflammation and MMP-12 expression in smokers and ex-smokers with COPD. Respiratory Research, 8(1). https://doi.org/10.1186/1465-9921-8-81
  • Bai, X., Stitzel, J. A., Bai, A., Zambrano, C. A., Phillips, M., Marrack, P., & Chan, E. D. (2017). Nicotine impairs macrophage control of mycobacterium tuberculosis. American Journal of Respiratory Cell and Molecular Biology, 57(3), 324–333. https://doi.org/10.1165/rcmb.2016-0270OC
  • Baraldo, S. (2004). Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax, 59(4), 308–312. https://doi.org/10.1136/thx.2003.012146
  • Barnes, P. J. (2008). Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology, 8(3), 183–192. https://doi.org/10.1038/nri2254
  • Barnes, P. J. (2016). Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 138(1), 16–27. https://doi.org/10.1016/j.jaci.2016.05.011
  • Barsh, G. S., Van Buren, E., Radicioni, G., O’Neal, W. K., Dang, H., Kasela, S., Garudadri, S., Curtis, J. L., Han, M. K., Krishnan, J. A., Wan, E. S., Silverman, E. K., Hastie, A., Ortega, V. E., Lappalainen, T., Nawijn, M. C., Berge, M. V. D., Christenson, S. A., … Kesimer, M. (2023). Genetic regulators of sputum mucin concentration and their associations with COPD phenotypes. PLoS Genetics, 19(6), e1010445. https://doi.org/10.1371/journal.pgen.1010445
  • Bartoli, M. L., DiFranco, A., Vagaggini, B., Bacci, E., Cianchetti, S., Dente, F. L., Tonelli, M., & Paggiaro, P. L. (2009). Biological markers in induced sputum of patients with different phenotypes of chronic airway obstruction. Respiration, 77(3), 265–272. https://doi.org/10.1159/000176385
  • Baty, J. J., Stoner, S. N., Mcdaniel, M. S., Huffines, J. T., Edmonds, S. E., Evans, N. J., Novak, L., & Scoffield, J. A. (2023). An oral commensal attenuates Pseudomonas aeruginosa -induced airway inflammation and modulates nitrite flux in respiratory epithelium. Microbiology Spectrum, 11(6). https://doi.org/10.1128/spectrum.02198-23
  • Bazzan, E., Turato, G., Tinè, M., Radu, C. M., Balestro, E., Rigobello, C., Biondini, D., Schiavon, M., Lunardi, F., Baraldo, S., Rea, F., Simioni, P., Calabrese, F., Saetta, M., & Cosio, M. G. (2017). Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity. Respiratory Research, 18(1). https://doi.org/10.1186/s12931-017-0522-0
  • Belchamber, K. B. R., Singh, R., Batista, C. M., Whyte, M. K., Dockrell, D. H., Kilty, I., Robinson, M. J., Wedzicha, J. A., Barnes, P. J., & Donnelly, L. E. (2019). Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages. European Respiratory Journal, 54(4), 1802244. https://doi.org/10.1183/13993003.02244-2018
  • Benarafa, C., Tran, H. B., Ahern, J., Holt, P., Dean, M. M., Reynolds, P. N., & Hodge, S. (2014). Oxidative stress decreases functional airway mannose binding lectin in COPD. PLoS One, 9(6), e98571. https://doi.org/10.1371/journal.pone.0098571
  • Benjamin, J. T., Plosa, E. J., Sucre, J. M. S., van der Meer, R., Dave, S., Gutor, S., Nichols, D. S., Gulleman, P. M., Jetter, C. S., Han, W., Xin, M., Dinella, P. C., Catanzarite, A., Kook, S., Dolma, K., Lal, C. V., Gaggar, A., Blalock, J. E., … Guttentag, S. H. (2021). Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. Journal of Clinical Investigation, 131(1). https://doi.org/10.1172/JCI139481
  • Berenson Charles, S., Garlipp Mary, A., Grove Lori, J., Maloney, J., & Sethi, S. (2006). Impaired phagocytosis of NontypeableHaemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. The Journal of Infectious Diseases, 194(10), 1375–1384. https://doi.org/10.1086/508428
  • Berenson, C. S., Kruzel, R. L., Eberhardt, E., Dolnick, R., Minderman, H., Wallace, P. K., & Sethi, S. (2014). Impaired innate immune alveolar macrophage response and the predilection for COPD exacerbations. Thorax, 69(9), 811–818. https://doi.org/10.1136/thoraxjnl-2013-203669
  • Bereswill, S., Erb-Downward, J. R., Thompson, D. L., Freeman, C. M., McCloskey, L., Schmidt, L. A., Young, V. B., Toews, G. B., Curtis, J. L., Sundaram, B., Martinez, F. J., & Huffnagle, G. B. (2011). Analysis of the lung microbiome in the “healthy” Smoker and in COPD. PLoS One, 6(2), e16384. https://doi.org/10.1371/journal.pone.0016384
  • Bezerra, F. S., Lanzetti, M., Nesi, R. T., Nagato, A. C., Silva, C. P. E., Kennedy-Feitosa, E., Melo, A. C., Cattani-Cavalieri, I., Porto, L. C., & Valenca, S. S. (2023). Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants, 12(3), 548. https://doi.org/10.3390/antiox12030548
  • Bongomin, F., Sharma, K., Subba, H. K., & Adhikari, S. (2024). Effect of self-management intervention on patients with chronic obstructive pulmonary diseases, Chitwan, Nepal. PLoS One, 19(1), e0296091. https://doi.org/10.1371/journal.pone.0296091
  • Boulet, L.-P. (2011). Heterogeneity of bronchitis in airway diseases in tertiary care clinical practice.
  • Brat, K., Plutinsky, M., & Hejduk, K., Svoboda, M, Popelkova, P, Zatloukal, J, Volakova, E, Fecaninova, M, Heribanova, L, Koblizek, V. (2018). Respiratory parameters predict poor outcome in COPD patients, category GOLD 2017 B. International Journal of Chronic Obstructive Pulmonary Disease, 13, 1037–1052. https://doi.org/10.2147/COPD.S147262
  • Caramori, G., Adcock, I. M., Casolari, P., Ito, K., Jazrawi, E., Tsaprouni, L., Villetti, G., Civelli, M., Carnini, C., Chung, K. F., Barnes, P. J., & Papi, A. (2011). Unbalanced oxidant-induced DNA damage and repair in COPD: A link towards lung cancer. Thorax, 66(6), 521–527. https://doi.org/10.1136/thx.2010.156448
  • Cattani-Cavalieri, I., Da Maia Valença, H., Moraes, J. A., Brito-Gitirana, L., Romana-Souza, B., Schmidt, M., & Valença, S. S. (2020). Dimethyl fumarate attenuates lung inflammation and oxidative stress induced by chronic exposure to diesel exhaust particles in mice. International Journal of Molecular Sciences, 21(24), 9658. https://doi.org/10.3390/ijms21249658
  • Cavalcante, G. C., Schaan, A. P., Cabral, G. F., Santana-da-Silva, M. N., Pinto, P., Vidal, A. F., & Ribeiro-dos-Santos, Â. (2019). A Cell’s fate: An overview of the Molecular Biology and Genetics of Apoptosis. International Journal of Molecular Sciences, 20(17), 4133. https://doi.org/10.3390/ijms20174133
  • Celli, B. R., Anderson, J. A., Cowans, N. J., Crim, C., Hartley, B. F., Martinez, F. J., Morris, A. N., Quasny, H., Yates, J., Vestbo, J., & Calverley, P. M. A. (2021). Pharmacotherapy and lung function decline in patients with chronic obstructive pulmonary disease. A systematic review. American Journal of Respiratory and Critical Care Medicine, 203(6), 689–698. https://doi.org/10.1164/rccm.202005-1854OC
  • Chang, C., He, F., Ao, M., Chen, J., Yu, T., Li, W., Li, B., Fang, M., & Yang, T. (2023). Inhibition of Nur77 expression and translocation by compound B6 reduces ER stress and alleviates cigarette smoke-induced inflammation and injury in bronchial epithelial cells. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1200110
  • Chan, M. C., Yeung, Y. C., Yu, E. L. M., & Yu, W. C. (2020). Blood eosinophil and risk of exacerbation in chronic obstructive pulmonary disease patients: A retrospective cohort analysis. International Journal of Chronic Obstructive Pulmonary Disease, 15, 2869–2877. https://doi.org/10.2147/COPD.S268018
  • Chen, Y.-W., Huang, M.-Z., Chen, C.-L., Kuo, C.-Y., Yang, C.-Y., Chiang-Ni, C., Chen, Y. Y. M., Hsieh, C.-M., Wu, H.-Y., Kuo, M.-L., Chiu, C.-H., & Lai, C.-H. (2020). PM2.5 impairs macrophage functions to exacerbate pneumococcus-induced pulmonary pathogenesis. Particle and Fibre Toxicology, 17(1). https://doi.org/10.1186/s12989-020-00362-2
  • Chen, J., López-Moyado, I. F., Seo, H., Lio, C. W. J., Hempleman, L. J., Sekiya, T., Yoshimura, A., Scott-Browne, J. P., & Rao, A. (2019). NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 567(7749), 530–534. https://doi.org/10.1038/s41586-019-0985-x
  • Chen, M., Zhang, Y., Yu, V. C., Chong, Y.-S., Yoshioka, T., & Ge, R. (2014). Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction. Cell Death & Differentiation, 21(5), 797–810. https://doi.org/10.1038/cdd.2014.3
  • Chen, J., Zhu, H., Chen, Q., Yang, Y., Chen, M., Huang, J., Chen, M., & Lian, N. (2022). The role of ferroptosis in chronic intermittent hypoxia-induced lung injury. BMC Pulmonary Medicine, 22(1). https://doi.org/10.1186/s12890-022-02262-x
  • Christenson, S. A., Smith, B. M., Bafadhel, M., & Putcha, N. (2022). Chronic obstructive pulmonary disease. The Lancet, 399(10342), 2227–2242. https://doi.org/10.1016/S0140-6736(22)00470-6
  • Chu, S., Ma, L., Wu, Y., Zhao, X., Xiao, B., & Pan, Q. (2021). C-EBPβ mediates in cigarette/IL-17A-induced bronchial epithelial–mesenchymal transition in COPD mice. BMC Pulmonary Medicine, 21(1). https://doi.org/10.1186/s12890-021-01738-6
  • Claus Vogelmeier, M. D., Bettina Hederer, M. D., Thomas Glaab, M. D., Hendrik Schmidt, P. D., Maureen, P. M. H., Rutten Van Mölken, P. D., Kai, M., Beeh, M. D., Klaus, F., Rabe, M. D., Leonardo, M., & Fabbri, M. D. (2011). Tiotropium versus Salmeterol for the prevention of exacerbations of COPD. Survey of Anesthesiology, 55(5), 244–245. https://doi.org/10.1097/SA.0b013e3182291d45
  • Clugston, R. D., Agudelo, C. W., Kumley, B. K., Xu, Y., Dabo, A. J., Geraghty, P., Campos, M., Foronjy, R., & Garcia-Arcos, I. (2020). Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS One, 15(2), e0228279. https://doi.org/10.1371/journal.pone.0228279
  • Cong, J., & Wei, H. (2019). Natural killer cells in the lungs. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.01416
  • Cummins, E. P., Oliver, K. M., Lenihan, C. R., Fitzpatrick, S. F., Bruning, U., Scholz, C. C., Slattery, C., Leonard, M. O., McLoughlin, P., & Taylor, C. T. (2010). NF-κB links CO2 sensing to innate immunity and inflammation in Mammalian Cells. The Journal of Immunology, 185(7), 4439–4445. https://doi.org/10.4049/jimmunol.1000701
  • Dale, T. P., Santer, M. D., Haris, M., Zuo, W., & Forsyth, N. R. (2023). Hypoxic conditions promote a proliferative, poorly differentiated phenotype in COPD lung tissue progenitor cells in vitro. Experimental Lung Research, 49(1), 12–26. https://doi.org/10.1080/01902148.2022.2158404
  • Dang Eric, E., Barbi, J., Yang, H.-Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.-R., Luo, W., Zeller, K., Shimoda, L., Topalian, S., Semenza, G., Dang, C., Pardoll, D., & Pan, F. (2011). Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell, 146(5), 772–784. https://doi.org/10.1016/j.cell.2011.07.033
  • Da Silva, C. O., De Souza Nogueira, J., Do Nascimento, A. P., Victoni, T., Bártholo, T. P., da Costa, C. H., Costa, A. M. A., Valença, S. D. S., Schmidt, M., & Porto, L. C. (2023). COPD patients exhibit distinct gene expression, accelerated cellular aging, and bias to M2 macrophages. International Journal of Molecular Sciences, 24(12), 9913. https://doi.org/10.3390/ijms24129913
  • David, B., Bafadhel, M., Koenderman, L., & De Soyza, A. (2021). Eosinophilic inflammation in COPD: From an inflammatory marker to a treatable trait. Thorax, 76(2), 188–195. https://doi.org/10.1136/thoraxjnl-2020-215167
  • De Cunto, G., Cavarra, E., Bartalesi, B., Lucattelli, M., & Lungarella, G. (2020). Innate immunity and cell surface receptors in the pathogenesis of COPD: Insights from mouse smoking models. International Journal of Chronic Obstructive Pulmonary Disease, 15: 1143–1154. https://doi.org/10.2147/COPD.S246219
  • De Groot, L. E. S., Van Der Veen, T. A., Martinez, F. O., Hamann, J., Lutter, R., & Melgert, B. N. (2019). Oxidative stress and macrophages: Driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? American Journal of Physiology-Lung Cellular and Molecular Physiology, 316(2), L369–L384. https://doi.org/10.1152/ajplung.00456.2018
  • Demedts, I. K. (2006). Elevated MMP-12 protein levels in induced sputum from patients with COPD. Thorax, 61(3), 196–201. https://doi.org/10.1136/thx.2005.042432
  • Deng, L., Jian, Z., Xu, T., Li, F., Deng, H., Zhou, Y., Lai, S., Xu, Z., & Zhu, L. (2023). Macrophage polarization: An important candidate regulator for lung diseases. Molecules, 28(5), 2379. https://doi.org/10.3390/molecules28052379
  • Deretic, V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity, 54(3), 437–453. https://doi.org/10.1016/j.immuni.2021.01.018
  • Devereux, G., Cotton, S., Fielding, S., McMeekin, N., Barnes, P. J., Briggs, A., Burns, G., Chaudhuri, R., Chrystyn, H., Davies, L., De Soyza, A., Gompertz, S., Haughney, J., Innes, K., Kaniewska, J., Lee, A., Morice, A., Norrie, J., … Wilson, A. (2018). Effect of theophylline as adjunct to Inhaled Corticosteroids on Exacerbations in patients with COPD. JAMA, 320(15), 1548. https://doi.org/10.1001/jama.2018.14432
  • Dicker, A. J., Huang, J. T. J., Lonergan, M., Keir, H. R., Fong, C. J., Tan, B., Cassidy, A. J., Finch, S., Mullerova, H., Miller, B. E., Tal-Singer, R., & Chalmers, J. D. (2021). The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. The Journal of Allergy and Clinical Immunology, 147(1), 158–167. https://doi.org/10.1016/j.jaci.2020.02.040
  • Di, Y. P., Ito, J. T., Cervilha, D. A. D. B., Gonçalves, N. G., Volpini, R. A., Caldini, E. G., Landman, G., Lin, C. J., Velosa, A. P. P., Teodoro, W. P. R., Tibério, I. D. F. L. C., Mauad, T., Martins, M. D. A., Macchione, M., & Lopes, F. D. T. Q. D. S. (2019). Th17/Treg imbalance in COPD progression: A temporal analysis using a CS-induced model. PLoS One, 14(1), e0209351. https://doi.org/10.1371/journal.pone.0209351
  • Dimic-Janjic, S., Hoda, M. A., Milenkovic, B., Kotur-Stevuljevic, J., Stjepanovic, M., Gompelmann, D., Jankovic, J., Miljkovic, M., Milin-Lazovic, J., Djurdjevic, N., Maric, D., Milivojevic, I., & Popevic, S. (2023). The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity. European Journal of Medical Research, 28(1). https://doi.org/10.1186/s40001-023-01094-7
  • Ding, J., Cui, X., & Liu, Q. (2017). Emerging role of HMGB1 in lung diseases: Friend or foe. Journal of Cellular and Molecular Medicine, 21(6), 1046–1057. https://doi.org/10.1111/jcmm.13048
  • Donaldson, G. C., Seemungal, T. A. R., Patel, I. S., Bhowmik, A., Wilkinson, T. M. A., Hurst, J. R., MacCallum, P. K., & Wedzicha, J. A. (2005). Airway and systemic inflammation and decline in lung function in patients with COPD. Chest, 128(4), 1995–2004. https://doi.org/10.1378/chest.128.4.1995
  • Dong, T., Chen, X., Xu, H., Song, Y., Wang, H., Gao, Y., Wang, J., Du, R., Lou, H., & Dong, T. (2022). Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacology & Therapeutics, 239, 108208. https://doi.org/10.1016/j.pharmthera.2022.108208
  • Dong, Y., Han, F., Su, Y., Sun, B., Zhao, W., & Pan, C. (2023). High uric acid aggravates apoptosis of lung epithelial cells induced by cigarette smoke extract through downregulating PRDX2 in chronic obstructive pulmonary disease. International Immunopharmacology, 118, 110056. https://doi.org/10.1016/j.intimp.2023.110056
  • Doyle, A. D., Mukherjee, M., Lesuer, W. E., Bittner, T. B., Pasha, S., Frere, J. J., Neely, J. L., Kloeber, J. A., Shim, K., Ochkur, S. I., Ho, T., Svenningsen, S., Wright, B., Rank, M. A., Lee, J. J., Nair, P., & Jacobsen, E. A. (2019). Eosinophil-derived IL-13 promotes emphysema. European Respiratory Journal, 53(5), 1801291. https://doi.org/10.1183/13993003.01291-2018
  • Droemann, D., Goldmann, T., Tiedje, T., Zabel, P., Dalhoff, K., & Schaaf, B. (2005). Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respiratory Research, 6(1). https://doi.org/10.1186/1465-9921-6-68
  • Elliott Michael, R., & Ravichandran Kodi, S. (2016). The dynamics of apoptotic cell clearance. Developmental Cell, 38(2), 147–160. https://doi.org/10.1016/j.devcel.2016.06.029
  • Eltboli, O., Bafadhel, M., Hollins, F., Wright, A., Hargadon, B., Kulkarni, N., & Brightling, C. (2014). COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils. BMC Pulmonary Medicine, 14(1). https://doi.org/10.1186/1471-2466-14-112
  • Eriksson Ström, J., Pourazar, J., Linder, R., Blomberg, A., Lindberg, A., Bucht, A., & Behndig, A. F. (2018). Cytotoxic lymphocytes in COPD airways: Increased NK cells associated with disease, iNKT and NKT-like cells with current smoking. Respiratory Research, 19(1). https://doi.org/10.1186/s12931-018-0940-7
  • Fang, Z.-F., Wang, Z.-N., Chen, Z., Peng, Y., Fu, Y., Yang, Y., Han, H.-L., Teng, Y.-B., Zhou, W., Xu, D., Liu, X.-Y., Xie, J.-X., Zhang, J., & Zhong, N.-S. (2024). Fine particulate matter contributes to COPD-like pathophysiology: Experimental evidence from rats exposed to diesel exhaust particles. Respiratory Research, 25(1). https://doi.org/10.1186/s12931-023-02623-y
  • Feller, D., Kun, J., Ruzsics, I., Rapp, J., Sarosi, V., Kvell, K., Helyes, Z., & Pongracz, J. E. (2018). Cigarette smoke-induced pulmonary inflammation becomes systemic by circulating extracellular vesicles containing Wnt5a and inflammatory cytokines. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01724
  • Feng, H., Li, M., Altawil, A., Yin, Y., Zheng, R., & Kang, J. (2021). Cigarette smoke extracts induce apoptosis in Raw264.7 cells via endoplasmic reticulum stress and the intracellular Ca2+/P38/STAT1 pathway. Toxicology in Vitro, 77, 105249. https://doi.org/10.1016/j.tiv.2021.105249
  • Feng, H., Yin, Y., Ren, Y., Li, M., Zhang, D., Xu, M., Cai, X., & Kang, J. (2020). Effect of CSE on M1/M2 polarization in alveolar and peritoneal macrophages at different concentrations and exposure in vitro. In Vitro Cellular & Developmental Biology - Animal, 56(2), 154–164. https://doi.org/10.1007/s11626-019-00426-4
  • Finch, D. K., Stolberg, V. R., Ferguson, J., Alikaj, H., Kady, M. R., Richmond, B. W., Polosukhin, V. V., Blackwell, T. S., McCloskey, L., Curtis, J. L., & Freeman, C. M. (2018). Lung dendritic cells drive natural killer cytotoxicity in chronic obstructive pulmonary disease via IL-15Rα. American Journal of Respiratory and Critical Care Medicine, 198(9), 1140–1150. https://doi.org/10.1164/rccm.201712-2513OC
  • Fischer, B., Voynow, J., & Ghio, A. (2015). COPD: Balancing oxidants and antioxidants. International Journal of Chronic Obstructive Pulmonary Disease, 261. https://doi.org/10.2147/COPD.S42414
  • Flahaut, M., Leprohon, P., Pham, N. P., Gingras, H., Bourbeau, J., Papadopoulou, B., Maltais, F., & Ouellette, M. (2023). Distinctive features of the oropharyngeal microbiome in Inuit of Nunavik and correlations of mild to moderate bronchial obstruction with dysbiosis. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43821-4
  • Fujii, W., Kapellos, T. S., Baßler, K., Händler, K., Holsten, L., Knoll, R., Warnat-Herresthal, S., Oestreich, M., Hinkley, E. R., Hasenauer, J., Pizarro, C., Thiele, C., Aschenbrenner, A. C., Ulas, T., Skowasch, D., & Schultze, J. L. (2021). Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes. ERJ Open Research, 7(3), 00915–2020. https://doi.org/10.1183/23120541.00915-2020
  • Fu, X., & Zhang, F. (2018). Role of the HIF‑1 signaling pathway in chronic obstructive pulmonary disease. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2018.6785
  • Gagliardo, R., Bucchieri, F., Montalbano, A. M., Albano, G. D., Gras, D., Fucarino, A., Marchese, R., Anzalone, G., Nigro, C. L., Chanez, P., & Profita, M. (2022). Airway epithelial dysfunction and mesenchymal transition in chronic obstructive pulmonary disease: Role of Oct-4. Life Sciences, 288, 120177. https://doi.org/10.1016/j.lfs.2021.120177
  • Garcia-Nuñez, M., Millares, L., Pomares, X., Ferrari, R., Pérez-Brocal, V., Gallego, M., Espasa, M., Moya, A., & Monsó, E. (2014). Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. Journal of Clinical Microbiology, 52(12), 4217–4223. https://doi.org/10.1128/JCM.01967-14
  • Garrastazu, R., García-Rivero, J. L., Ruiz, M., Helguera, J. M., Arenal, S., Bonnardeux, C., León, C., Llorca, J., & Santibañez, M. (2016). Prevalencia de vacunación antigripal en pacientes con enfermedad pulmonar obstructiva crónica e impacto en el riesgo de agudizaciones graves. Archivos de Bronconeumología, 52(2), 88–95. https://doi.org/10.1016/j.arbres.2015.09.001
  • Gates, K. L., Howell, H. A., Nair, A., Vohwinkel, C. U., Welch, L. C., Beitel, G. J., Hauser, A. R., Sznajder, J. I., & Sporn, P. H. S. (2013). Hypercapnia impairs lung neutrophil function and increases mortality in murine pseudomonas pneumonia. American Journal of Respiratory Cell and Molecular Biology, 49(5), 821–828. https://doi.org/10.1165/rcmb.2012-0487OC
  • George, L., & Brightling, C. E. (2015). Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. Therapeutic Advances in Chronic Disease, 7(1), 34–51. https://doi.org/10.1177/2040622315609251
  • Ghosh, B., Gaike, A. H., Pyasi, K., Brashier, B., Das, V. V., Londhe, J. D., Juvekar, S., Shouche, Y. S., Donnelly, L., Salvi, S. S., & Barnes, P. J. (2019). Bacterial load and defective monocyte-derived macrophage bacterial phagocytosis in biomass smoke-related COPD. European Respiratory Journal, 53(2), 1702273. https://doi.org/10.1183/13993003.02273-2017
  • Gieseck, R. L., Wilson, M. S., & Wynn, T. A. (2017). Type 2 immunity in tissue repair and fibrosis. Nature Reviews Immunology, 18(1), 62–76. https://doi.org/10.1038/nri.2017.90
  • Giordano, L., Gregory, A. D., Pérez Verdaguer, M., Ware, S. A., Harvey, H., DeVallance, E., Brzoska, T., Sundd, P., Zhang, Y., Sciurba, F. C., Shapiro, S. D., & Kaufman, B. A. (2022). Extracellular release of mitochondrial DNA: Triggered by cigarette smoke and detected in COPD. Cells, 11(3), 369. https://doi.org/10.3390/cells11030369
  • Gong, J., Zhao, H., Liu, T., Li, L., Cheng, E., Zhi, S., Kong, L., Yao, H.-W., & Li, J. (2019). Cigarette smoke reduces fatty acid catabolism, leading to Apoptosis in Lung Endothelial Cells: Implication for pathogenesis of COPD. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.00941
  • Grashoff, W. F. H., Sont, J. K., & Sterk, P. J., Hiemstra, PS, De Boer, WI, Stolk, J, Han, J, Van Krieken, JM. (1997). Chronic obstructive pulmonary disease role of Bronchiolar Mast Cells and macrophages. The American Journal of Pathology. 151(6):1785.
  • Hannan, S. E., Harris, J. O., Sheridan, N. P., & Patel, J. M. (1989). Cigarette smoke alters plasma membrane fluidity of rat alveolar macrophages. American Review of Respiratory Disease, 140(6), 1668–1673. https://doi.org/10.1164/ajrccm/140.6.1668
  • Hao, W., Li, M., Zhang, Y., Zhang, C., & Xue, Y. (2019). Expressions of MMP-12, TIMP-4, and neutrophil elastase in PBMCs and exhaled breath condensate in patients with COPD and their relationships with disease severity and acute exacerbations. Journal of Immunology Research, 2019, 1–10. https://doi.org/10.1155/2019/7142438
  • Haq, I., Lowrey, G. E., Kalsheker, N., & Johnson, S. R. (2011). Matrix metalloproteinase-12 (MMP-12) SNP affects MMP activity, lung macrophage infiltration and protects against emphysema in COPD. Thorax, 66(11), 970–976. https://doi.org/10.1136/thx.2011.159087
  • Hastie, A. T., Martinez, F. J., Curtis, J. L., Doerschuk, C. M., Hansel, N. N., Christenson, S., Putcha, N., Ortega, V. E., Li, X., Barr, R. G., Carretta, E. E., Couper, D. J., Cooper, C. B., Hoffman, E. A., Kanner, R. E., Kleerup, E., O’Neal, W. K., Paine, R., … Wise, R. A. (2017). Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: An analysis of the SPIROMICS cohort. The Lancet Respiratory Medicine, 5(12), 956–967. https://doi.org/10.1016/S2213-2600(17)30432-0
  • Hearps, A. C., Martin, G. E., Angelovich, T. A., Cheng, W.-J., Maisa, A., Landay, A. L., Jaworowski, A., & Crowe, S. M. (2012). Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell, 11(5), 867–875. https://doi.org/10.1111/j.1474-9726.2012.00851.x
  • He, J., Qin, M., Chen, Y., Hu, Z., Xie, F., Ye, L., & Hui, T. (2020). Epigenetic regulation of matrix metalloproteinases in inflammatory diseases: A narrative review. Cell & Bioscience, 10(1). https://doi.org/10.1186/s13578-020-00451-x
  • He, S., Tian, R., Zhang, X., Yao, Q., Chen, Q., Liu, B., Liao, L., Gong, Y., Yang, H., & Wang, D. (2023). PPARγ inhibits small airway remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD. Clinical Immunology, 250, 109293. https://doi.org/10.1016/j.clim.2023.109293
  • Higham, A., Scott, T., Li, J., Gaskell, R., Dikwa, A., Shah, R., Montero-Fernandez, M., Lea, S., & Singh, D. (2020). Effects of corticosteroids on COPD lung macrophage phenotype and function. Clinical Science, 134(7), 751–763. https://doi.org/10.1042/CS20191202
  • Hodge, S., Hodge, G., Ahern, J., Jersmann, H., Holmes, M., & Reynolds, P. N. (2007). Smoking alters alveolar macrophage recognition and phagocytic ability. American Journal of Respiratory Cell and Molecular Biology, 37(6), 748–755. https://doi.org/10.1165/rcmb.2007-0025OC
  • Hodge, S. J., Hodge, G. L., Reynolds, P. N., Scicchitano, R., & Holmes, M. (2003). Increased production of TGF-β and apoptosis of T lymphocytes isolated from peripheral blood in COPD. American Journal of Physiology-Lung Cellular and Molecular Physiology, 285(2), L492–L499. https://doi.org/10.1152/ajplung.00428.2002
  • Hodge, S., Hodge, G., Scicchitano, R., Reynolds, P. N., & Holmes, M. (2003). Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunology & Cell Biology, 81(4), 289–296. https://doi.org/10.1046/j.1440-1711.2003.t01-1-01170.x
  • Hodge, G., Mukaro, V., Holmes, M., Reynolds, P. N., & Hodge, S. (2013). Enhanced cytotoxic function of natural killer and natural killer T-like cells associated with decreased CD94 (Kp43) in the chronic obstructive pulmonary disease airway. Respirology, 18(2), 369–376. https://doi.org/10.1111/j.1440-1843.2012.02287.x
  • Hoenderdos, K., Lodge, K. M., Hirst, R. A., Chen, C., Palazzo, S. G. C., Emerenciana, A., Summers, C., Angyal, A., Porter, L., Juss, J. K., O’Callaghan, C., Chilvers, E. R., & Condliffe, A. M. (2016). Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax, 71(11), 1030–1038. https://doi.org/10.1136/thoraxjnl-2015-207604
  • Hogg, J. C., Chu, F., Utokaparch, S., Woods, R., Elliott, W. M., Buzatu, L., Cherniack, R. M., Rogers, R. M., Sciurba, F. C., Coxson, H. O., & Paré, P. D. (2004). The nature of small-airway obstruction in chronic obstructive pulmonary disease. New England Journal of Medicine, 350(26), 2645–2653. https://doi.org/10.1056/NEJMoa032158
  • Hristova, V. A., Watson, A., Chaerkady, R., Glover, M. S., Ackland, J., Angerman, B., Belfield, G., Belvisi, M. G., Burke, H., Cellura, D., Clark, H. W., Etal, D., Freeman, A., Heinson, A. I., Hess, S., Hühn, M., Hall, E., Mackay, A., … Staples, K. J. (2023). Multiomics links global surfactant dysregulation with airflow obstruction and emphysema in COPD. ERJ Open Research, 9(3), 00378–2022. https://doi.org/10.1183/23120541.00378-2022
  • Hsieh, M.-H., Chen, P.-C., Hsu, H.-Y., Liu, J.-C., Ho, Y.-S., Lin, Y. J., Kuo, C.-W., Kuo, W.-S., Kao, H.-F., Wang, S.-D., Liu, Z.-G., Wu, L. S. H., & Wang, J.-Y. (2022). Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cellular & Molecular Immunology, 20(1), 38–50. https://doi.org/10.1038/s41423-022-00946-2
  • Huang, Y., Pei, Y., Qian, Y., Yao, Z., Chen, C., Du, J., Shi, M., & Zhou, T. (2022). A meta-analysis on the efficacy and safety of bacterial lysates in chronic obstructive pulmonary disease. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.877124
  • Hurst, J. R., Vestbo, J., Anzueto, A., Locantore, N., Müllerova, H., Tal-Singer, R., Miller, B., Lomas, D. A., Agusti, A., MacNee, W., Calverley, P., Rennard, S., Wouters, E. F. M., & Wedzicha, J. A. (2010). Susceptibility to exacerbation in chronic obstructive pulmonary disease. New England Journal of Medicine, 363(12), 1128–1138. https://doi.org/10.1056/NEJMoa0909883
  • Imani, S., Salimian, J., Fu, J., Ghanei, M., & Panahi, Y. (2016). Th17/Treg-related cytokine imbalance in sulfur mustard exposed and stable chronic obstructive pulmonary (COPD) patients: Correlation with disease activity. Immunopharmacology and Immunotoxicology, 38(4), 270–280. https://doi.org/10.1080/08923973.2016.1188402
  • Ismaiel, N. M., & Henzler, D. J. M. A. (2011). Effects of hypercapnia and hypercapnic acidosis on attenuation of ventilator-associated lung injury. Minerva anestesiologica, 77(7), 723–733.
  • Ismaiel, N., Whynot, S., Geldenhuys, L., Xu, Z., Slutsky, A. S., Chappe, V., & Henzler, D. (2022). Lung-Protective Ventilation Attenuates Mechanical Injury While Hypercapnia Attenuates Biological Injury in a rat Model of ventilator-associated Lung Injury. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.814968
  • Iwasaki, H., Mizuno, S.-I., Mayfield, R., Shigematsu, H., Arinobu, Y., Seed, B., Gurish, M. F., Takatsu, K., & Akashi, K. (2005). Identification of eosinophil lineage–committed progenitors in the murine bone marrow. The Journal of Experimental Medicine, 201(12), 1891–1897. https://doi.org/10.1084/jem.20050548
  • Jaramillo, M. C., & Zhang, D. D. (2013). The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes & Development, 27(20), 2179–2191. https://doi.org/10.1101/gad.225680.113
  • Jeong, J.-S., Kim, J.-W., Kim, J.-H., Kim, C.-Y., Ko, J.-W., & Kim, T.-W. (2023). Protective effects of chestnut (castanea crenata) inner shell extract in macrophage-driven emphysematous lesion induced by cigarette smoke condensate. Nutrients, 15(2), 253. https://doi.org/10.3390/nu15020253
  • Jia, J., Conlon, T. M., Ballester Lopez, C., Seimetz, M., Bednorz, M., Zhou-Suckow, Z., Weissmann, N., Eickelberg, O., Mall, M. A., & Yildirim, A. Ö. (2016). Cigarette smoke causes acute airway disease and exacerbates chronic obstructive lung disease in neonatal mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 311(3), L602–L10. https://doi.org/10.1152/ajplung.00124.2016
  • Jiang, Y., Wang, J., Zhang, H., Min, Y., & Gu, T. (2023). Serum exosome-derived MiR-7 Exacerbates chronic obstructive pulmonary disease by regulating macrophage differentiation. Iranian Journal of Public Health. https://doi.org/10.18502/ijph.v52i3.12139
  • Jormsjö, S., Ye, S., Moritz, J., Walter, D. H., Dimmeler, S., Zeiher, A. M., Henney, A., Hamsten, A., & Eriksson, P. (2000). Allele-specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circulation Research, 86(9), 998–1003. https://doi.org/10.1161/01.RES.86.9.998
  • Jubrail, J., Kurian, N., & Niedergang, F. (2017). Macrophage phagocytosis cracking the defect code in COPD. Biomedical Journal, 40(6), 305–312. https://doi.org/10.1016/j.bj.2017.09.004
  • Kanazawa, H., Yoshikawa, & Yoshikawa, J. (2005). Elevated oxidative stress and reciprocal reduction of vascular endothelial growth factor levels with severity of COPD. Chest, 128(5), 3191–3197. https://doi.org/10.1378/chest.128.5.3191
  • Karner, C., Chong, J., & Poole, P. (2014). Tiotropium versus placebo for chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews, 2016(11). https://doi.org/10.1002/14651858.CD009285.pub3
  • Kaur, G., Muthumalage, T., & Rahman, I. (2023). Clearance of senescent cells reverts the cigarette smoke‐induced lung senescence and airspace enlargement in p16‐3MR mice. Aging Cell, 22(7). https://doi.org/10.1111/acel.13850
  • Keir, H. R., & Chalmers, J. D. (2022). Neutrophil extracellular traps in chronic lung disease: Implications for pathogenesis and therapy. European Respiratory Review, 31(163), 210241. https://doi.org/10.1183/16000617.0241-2021
  • Khalaf, R. M., Lea, S. R., Metcalfe, H. J., & Singh, D. (2017). Mechanisms of corticosteroid insensitivity in COPD alveolar macrophages exposed to NTHi. Respiratory Research, 18(1). https://doi.org/10.1186/s12931-017-0539-4
  • Kheradmand, F., Zhang, Y., & Corry, D. B. (2023). Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiological Reviews, 103(2), 1059–1093. https://doi.org/10.1152/physrev.00036.2021
  • Kim, J. H., Kim, J. W., Kim, C. Y., Jeong, J.-S., Ko, J.-W., & Kim, T.-W. (2023). Green tea extract ameliorates macrophage‐driven emphysematous lesions in chronic obstructive pulmonary disease induced by cigarette smoke condensate. Phytotherapy Research, 37(4), 1366–1376. https://doi.org/10.1002/ptr.7745
  • Kim, M.-S., Kim, D.-S., Yuk, H. J., Kim, S.-H., Yang, W.-K., Park, G. D., Kim, K. S., Ham, W. J., & Sung, Y.-Y. (2023). Siraitia grosvenorii extract attenuates airway inflammation in a Murine Model of chronic obstructive pulmonary disease Induced by Cigarette Smoke and lipopolysaccharide. Nutrients, 15(2), 468. https://doi.org/10.3390/nu15020468
  • Kim, H.-S., Oh, H., Kim, B., Ji, Y., Holzapfel, W. H., & Kang, H. (2023). Multifunctional effects of lactobacillus sakei HEM 224 on the gastrointestinal tract and airway inflammation. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-45043-0
  • Koatz, A. M., Coe, N. A., Cicerán, A., & Alter, A. J. (2016). Clinical and immunological benefits of OM-85 bacterial lysate in patients with allergic rhinitis, asthma, and COPD and recurrent respiratory infections. Lung, 194(4), 687–697. https://doi.org/10.1007/s00408-016-9880-5
  • Kohler, J. B., Cervilha, D. A. D. B., Riani Moreira, A., Santana, F. R., Farias, T. M., Alonso Vale, M. I. C., Martins, M. D. A., Prado, C. M., Tibério, I. C., Ito, J. T., & Lopes, F. D. T. Q. D. S. (2019). Microenvironmental stimuli induce different macrophage polarizations in experimental models of emphysema. Biology Open. https://doi.org/10.1242/bio.040808
  • Kojima, J., Araya, J., Hara, H., Ito, S., Takasaka, N., Kobayashi, K., Fujii, S., Tsurushige, C., Numata, T., Ishikawa, T., Shimizu, K., Kawaishi, M., Saito, K., Kamiya, N., Hirano, J., Odaka, M., Morikawa, T., Hano, H., … Nakayama, K. (2013). Apoptosis inhibitor of macrophage (AIM) expression in alveolar macrophages in COPD. Respiratory Research, 14(1). https://doi.org/10.1186/1465-9921-14-30
  • Ko, F. W. S., Lau, C. Y. K., Leung, T. F., Wong, G. W. K., Lam, C. W. K., & Hui, D. S. C. (2006). Exhaled breath condensate levels of 8-isoprostane, growth related oncogene α and monocyte chemoattractant protein-1 in patients with chronic obstructive pulmonary disease. Respiratory Medicine, 100(4), 630–638. https://doi.org/10.1016/j.rmed.2005.08.009
  • Kristiansen, M., Graversen, J. H., Jacobsen, C., Sonne, O., Hoffman, H.-J., Law, S. K. A., & Moestrup, S. K. (2001). Identification of the haemoglobin scavenger receptor. Nature, 409(6817), 198–201. https://doi.org/10.1038/35051594
  • Kwok, W. C., Chau, C. H., & Tam, T. C. C., Lam, FM, Ho, JC. (2023). Variability of blood eosinophil Count at Stable-State in predicting exacerbation risk of chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 18, 1145–1153. https://doi.org/10.2147/COPD.S401357
  • Lacoste, J., Bousquet, J., Chanez, P., Vanvyve, T., Simonylafontaine, J., Lequeu, N., Vic, P., Enander, I., Godard, P., & Michel, F. (1993). Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 92(4), 537–548. https://doi.org/10.1016/0091-6749(93)90078-T
  • Lam, T. Y. W., Nguyen, N., Peh, H. Y., Shanmugasundaram, M., Chandna, R., Tee, J. H., Ong, C. B., Hossain, M. Z., Venugopal, S., Zhang, T., Xu, S., Qiu, T., Kong, W. T., Chakarov, S., Srivastava, S., Liao, W., Kim, J.-S., Teh, M., … Fred Wong, W. S. (2022). ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proceedings of the National Academy of Sciences, 119(4). https://doi.org/10.1073/pnas.2019161119
  • Lea, S., Gaskell, R., Hall, S., Maschera, B., Hessel, E., & Singh, D. (2021). Assessment of bacterial exposure on phagocytic capability and surface marker expression of sputum macrophages and neutrophils in COPD patients. Clinical and Experimental Immunology, 206(1), 99–109. https://doi.org/10.1111/cei.13638
  • Lea, S., Higham, A., Beech, A., & Singh, D. (2023). How inhaled corticosteroids target inflammation in COPD. European Respiratory Review, 32(170), 230084. https://doi.org/10.1183/16000617.0084-2023
  • Lee, J.-W., Chun, W., Lee, H. J., Min, J.-H., Kim, S.-M., Seo, J.-Y., Ahn, K.-S., & Oh, S.-R. (2021). The role of macrophages in the development of acute and chronic inflammatory lung diseases. Cells, 10(4), 897. https://doi.org/10.3390/cells10040897
  • Le, Y., Wang, Y., Zhou, L., Xiong, J., Tian, J., Yang, X., Gai, X., & Sun, Y. (2019). Cigarette smoke-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages. Journal of Cellular and Molecular Medicine, 24(2), 1319–1331. https://doi.org/10.1111/jcmm.14789
  • Li, N., Liu, Y., & Cai, J. (2019). Lncrna Mir155hg regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomedicine & Pharmacotherapy, 117. https://doi.org/10.1016/j.biopha.2019.109015
  • Lindenauer, P. K., Stefan, M. S., Pekow, P. S., Mazor, K. M., Priya, A., Spitzer, K. A., Lagu, T. C., Pack, Q. R., Pinto-Plata, V. M., & ZuWallack, R. (2020). Association Between Initiation of Pulmonary Rehabilitation After Hospitalization for COPD and 1-year survival among medicare beneficiaries. JAMA, 323(18), 1813. https://doi.org/10.1001/jama.2020.4437
  • Lipson, D. A., Barnhart, F., Brealey, N., Brooks, J., Criner, G. J., Day, N. C., Dransfield, M. T., Halpin, D. M. G., Han, M. K., Jones, C. E., Kilbride, S., Lange, P., Lomas, D. A., Martinez, F. J., Singh, D., Tabberer, M., Wise, R. A., & Pascoe, S. J. (2018). Once-daily Single-Inhaler Triple versus dual therapy in patients with COPD. New England Journal of Medicine, 378(18), 1671–1680. https://doi.org/10.1056/NEJMoa1713901
  • Lipson, D. A., Crim, C., Criner, G. J., Day, N. C., Dransfield, M. T., Halpin, D. M. G., Han, M. K., Jones, C. E., Kilbride, S., Lange, P., Lomas, D. A., Lettis, S., Manchester, P., Martin, N., Midwinter, D., Morris, A., Pascoe, S. J., Singh, D., Wise, R. A., & Martinez, F. J. (2020). Reduction in all-cause mortality with fluticasone Furoate/Umeclidinium/Vilanterol in patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 201(12), 1508–1516. https://doi.org/10.1164/rccm.201911-2207OC
  • Li, M.-Y., Qin, Y.-Q., Tian, Y.-G., Li, K.-C., Oliver, B. G., Liu, X.-F., Zhao, P., & Li, J.-S. (2022). Effective-component compatibility of Bufei Yishen formula III ameliorated COPD by improving airway epithelial cell senescence by promoting mitophagy via the NRF2/PINK1 pathway. BMC Pulmonary Medicine, 22(1). https://doi.org/10.1186/s12890-022-02191-9
  • LI, H., Shi, K., Zhao, Y., Du, J., Hu, D., & Liu, Z. (2019). TIMP-1 and MMP-9 expressions in COPD patients complicated with spontaneous pneumothorax and their correlations with treatment outcomes. Pakistan Journal of Medical Sciences, 36(2). https://doi.org/10.12669/pjms.36.2.1244
  • Liu, B., Cheng, L., Gao, H., Zhang, J., Dong, Y., Gao, W., Yuan, S., Gong, T., & Huang, W. (2023). The biology of VSIG4: Implications for the treatment of immune-mediated inflammatory diseases and cancer. Cancer Letters, 553, 215996. https://doi.org/10.1016/j.canlet.2022.215996
  • Liu, X., Hu, Z., Zhou, H., & Huang, T. (2021). N-Acetylcysteine improves inflammatory response in COPD patients by regulating Th17/Treg balance through hypoxia inducible factor-1α pathway. BioMed Research International, 2021, 1–7. https://doi.org/10.1155/2021/6372128
  • Liu, Y., Liu, H., Li, C., Ma, C., & Ge, W. (2020). Proteome profiling of lung tissues in chronic obstructive pulmonary disease (COPD): Platelet and macrophage dysfunction contribute to the pathogenesis of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 15, 973–980. https://doi.org/10.2147/COPD.S246845
  • Liu, C., Lu, J., Yuan, T., Xie, L., & Zhang, L. (2023). EPC-exosomal miR-26a-5p improves airway remodeling in COPD by inhibiting ferroptosis of bronchial epithelial cells via PTGS2/PGE2 signaling pathway. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33151-w
  • Liu, J., Ouyang, Y., Zhang, Z., Wen, S., Pi, Y., Chen, D., Su, Z., Liang, Z., Guo, L., & Wang, Y. (2022). The role of Th17 cells: Explanation of relationship between periodontitis and COPD? Inflammation Research, 71(9), 1011–1024. https://doi.org/10.1007/s00011-022-01602-1
  • Liu, L., Qin, Y., Cai, Z., Tian, Y., Liu, X., Li, J., & Zhao, P. (2021). Effective-components combination improves airway remodeling in COPD rats by suppressing M2 macrophage polarization via the inhibition of mTORC2 activity. Phytomedicine, 92, 153759. https://doi.org/10.1016/j.phymed.2021.153759
  • Liu, T., Zhang, Z., Shen, W., Wu, Y., & Bian, T. (2023). MicroRNA let-7 induces M2 macrophage polarization in COPD emphysema through the IL-6/STAT3 pathway. International Journal of Chronic Obstructive Pulmonary Disease, 18, 575–591. https://doi.org/10.2147/COPD.S404850
  • Liu, J., Zhang, Z., Yang, Y., Di, T., Wu, Y., & Bian, T. (2022). NCOA4-Mediated Ferroptosis in Bronchial Epithelial Cells Promotes Macrophage M2 polarization in COPD emphysema. International Journal of Chronic Obstructive Pulmonary Disease, 17, 667–681. https://doi.org/10.2147/COPD.S354896
  • Li, N., Xiong, R., Li, G., Wang, B., & Geng, Q. (2023). PM2.5 contributed to pulmonary epithelial senescence and ferroptosis by regulating USP3-SIRT3-P53 axis. Free Radical Biology and Medicine, 205, 291–304. https://doi.org/10.1016/j.freeradbiomed.2023.06.017
  • Li, Y., Yang, Y., Guo, T., Weng, C., Yang, Y., Wang, Z., Zhang, L., & Li, W. (2023). Heme oxygenase-1 determines the cell fate of ferroptotic death of alveolar macrophages in COPD. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1162087
  • LI, Y., Zhang, P., An, Z., Yue, C., Wang, Y., Liu, Y., Yuan, X., Ma, Y., Li, K., Yin, Z., Wang, L., & Wang, H. (2022). Effectiveness of influenza and pneumococcal vaccines on chronic obstructive pulmonary disease exacerbations. Respirology, 27(10), 844–853. https://doi.org/10.1111/resp.14309
  • Llewellyn-Jones, C. (2002). Long-acting β2-agonists in chronic obstructive pulmonary disease. Hospital Medicine, 63(1), 20–23. https://doi.org/10.12968/hosp.2002.63.1.1720
  • Lodge, K. M., Vassallo, A., Liu, B., Long, M., Tong, Z., Newby, P. R., Agha-Jaffar, D., Paschalaki, K., Green, C. E., Belchamber, K. B. R., Ridger, V. C., Stockley, R. A., Sapey, E., Summers, C., Cowburn, A. S., Chilvers, E. R., Li, W., & Condliffe, A. M. (2022). Hypoxia increases the potential for Neutrophil-mediated Endothelial Damage in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 205(8), 903–916. https://doi.org/10.1164/rccm.202006-2467OC
  • Loffek, S., Schilling, O., & Franzke, C. W. (2010). Biological role of matrix metalloproteinases: A critical balance. European Respiratory Journal, 38(1), 191–208. https://doi.org/10.1183/09031936.00146510
  • Lonergan, M., Dicker, A. J., Crichton, M. L., Keir, H. R., Van Dyke, M. K., Mullerova, H., Miller, B. E., Tal-Singer, R., & Chalmers, J. D. (2020). Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD. Respiratory Research, 21(1). https://doi.org/10.1186/s12931-020-01436-7
  • Long, E. O. (2007). Ready for prime time: NK cell priming by dendritic cells. Immunity, 26(4), 385–387. https://doi.org/10.1016/j.immuni.2007.04.001
  • Loreto Palacio, P., Godoy, J. R., Aktas, O., & Hanschmann, E.-M. (2022). Changing perspectives from oxidative stress to redox signaling—extracellular redox control in translational medicine. Antioxidants, 11(6), 1181. https://doi.org/10.3390/antiox11061181
  • Louhelainen, N., Rytilä, P., Haahtela, T., Kinnula, V. L., & Djukanović, R. (2009). Persistence of oxidant and protease burden in the airways after smoking cessation. BMC Pulmonary Medicine, 9(1). https://doi.org/10.1186/1471-2466-9-25
  • Lourenço, J. D., Teodoro, W. R., Barbeiro, D. F., Velosa, A. P. P., Silva, L. E. F., Kohler, J. B., Moreira, A. R., Aun, M. V., da Silva, I. C., Fernandes, F. L. A., Negri, E. M., Gross, J. L., Tibério, I. F. L. C., Ito, J. T., & Lopes, F. D. T. Q. S. (2021). Th17/Treg-related intracellular signaling in patients with chronic obstructive pulmonary disease: Comparison between local and systemic responses. Cells, 10(7), 1569. https://doi.org/10.3390/cells10071569
  • Lu, H.-L., Huang, X.-Y., Luo, Y.-F., Tan, W.-P., Chen, P.-F., & Guo, Y.-B. (2018). Activation of M1 macrophages plays a critical role in the initiation of acute lung injury. Bioscience Reports, 38(2). https://doi.org/10.1042/BSR20171555
  • Machiya, J.-I., Shibata, Y., Yamauchi, K., Hirama, N., Wada, T., Inoue, S., Abe, S., Takabatake, N., Sata, M., & Kubota, I. (2007). Enhanced expression of MafB inhibits macrophage apoptosis induced by cigarette smoke exposure. American Journal of Respiratory Cell and Molecular Biology, 36(4), 418–426. https://doi.org/10.1165/rcmb.2006-0248OC
  • Maetani, T., Tanabe, N., Sato, A., Shiraishi, Y., Sakamoto, R., Ogawa, E., Sakai, H., Matsumoto, H., Sato, S., Date, H., Hirai, T., & Muro, S. (2023). Association between blood eosinophil count and small airway eosinophils in smokers with and without COPD. ERJ Open Research, 9(5), 00235–2023. https://doi.org/10.1183/23120541.00235-2023
  • Majo, J., Ghezzo, H., & Cosio, M. G. (2001). Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. European Respiratory Journal, 17(5), 946–953. https://doi.org/10.1183/09031936.01.17509460
  • Maltais, F., Bjermer, L., Kerwin, E. M., Jones, P. W., Watkins, M. L., Tombs, L., Naya, I. P., Boucot, I. H., Lipson, D. A., Compton, C., Vahdati-Bolouri, M., & Vogelmeier, C. F. (2019). Efficacy of umeclidinium/vilanterol versus umeclidinium and salmeterol monotherapies in symptomatic patients with COPD not receiving inhaled corticosteroids: The EMAX randomised trial. Respiratory Research, 20(1). https://doi.org/10.1186/s12931-019-1193-9
  • Marquardt, N., Kekäläinen, E., Chen, P., Kvedaraite, E., Wilson, J. N., Ivarsson, M. A., Mjösberg, J., Berglin, L., Säfholm, J., Manson, M. L., Adner, M., Al-Ameri, M., Bergman, P., Orre, A.-C., Svensson, M., Dahlén, B., Dahlén, S.-E., Ljunggren, H.-G., & Michaëlsson, J. (2017). Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69 − CD56 dim cells. Journal of Allergy and Clinical Immunology, 139(4), 1321–30.e4. https://doi.org/10.1016/j.jaci.2016.07.043
  • Martínez-Baz, I., Casado, I., Navascués, A., Portillo, M. E., Guevara, M., Ezpeleta, C., & Castilla, J. (2022). Chronic obstructive pulmonary disease and influenza vaccination effect in preventing outpatient and inpatient influenza cases. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08952-0
  • Martinez, F. J., Fabbri, L. M., Ferguson, G. T., Orevillo, C., Darken, P., Martin, U. J., & Reisner, C. (2017). Baseline symptom score impact on benefits of Glycopyrrolate/Formoterol metered dose inhaler in COPD. Chest, 152(6), 1169–1178. https://doi.org/10.1016/j.chest.2017.07.007
  • Martinez, F. J., Rabe, K. F., Ferguson, G. T., Wedzicha, J. A., Singh, D., Wang, C., Rossman, K., St. Rose, E., Trivedi, R., Ballal, S., Darken, P., Aurivillius, M., Reisner, C., & Dorinsky, P. (2021). Reduced all-cause mortality in the ETHOS trial of Budesonide/Glycopyrrolate/Formoterol for chronic obstructive pulmonary disease. A randomized, double-blind, multicenter, parallel-group study. American Journal of Respiratory and Critical Care Medicine, 203(5), 553–564. https://doi.org/10.1164/rccm.202006-2618OC
  • Maté, I., Martínez De Toda, I., Arranz, L., Álvarez-Sala, J. L., & De la Fuente, M. (2021). Accelerated immunosenescence, oxidation and inflammation lead to a higher biological age in COPD patients. Experimental Gerontology, 154, 154. https://doi.org/10.1016/j.exger.2021.111551
  • Mckendry, R. T., Spalluto, C. M., Burke, H., Nicholas, B., Cellura, D., Al-Shamkhani, A., Staples, K. J., & Wilkinson, T. M. A. (2016). Dysregulation of antiviral function of CD8 + T cells in the chronic obstructive pulmonary disease Lung. Role of the PD-1–PD-L1 axis. American Journal of Respiratory and Critical Care Medicine, 193(6), 642–651. https://doi.org/10.1164/rccm.201504-0782OC
  • Mcnicholas, W., & Kent, M. (2011). Hypoxemia in patients with COPD: Cause, effects, and disease progression. International Journal of Chronic Obstructive Pulmonary Disease, 199. https://doi.org/10.2147/COPD.S10611
  • Mcquattie-Pimentel, A. C., Ren, Z., Joshi, N., Watanabe, S., Stoeger, T., Chi, M., Lu, Z., Sichizya, L., Aillon, R. P., Chen, C.-I., Soberanes, S., Chen, Z., Reyfman, P. A., Walter, J. M., Anekalla, K. R., Davis, J. M., Helmin, K. A., Runyan, C. E., … Misharin, A. V. (2021). The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. Journal of Clinical Investigation, 131(4). https://doi.org/10.1172/JCI140299
  • Milara, J., Ballester, B., De Diego, A., Calbet, M., Ramis, I., Miralpeix, M., & Cortijo, J. (2022). The pan-JAK inhibitor LAS194046 reduces neutrophil activation from severe asthma and COPD patients in vitro. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-09241-6
  • Milara, J., Peiró, T., Serrano, A., & Cortijo, J. (2013). Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke. Thorax, 68(5), 410–420. https://doi.org/10.1136/thoraxjnl-2012-201761
  • Mintz, M., Barjaktarevic, I., Mahle, D. A., Make, B., Skolnik, N., Yawn, B., Zeyzus-Johns, B., & Hanania, N. A. (2023). Reducing the risk of mortality in chronic obstructive pulmonary disease with pharmacotherapy: A narrative review. Mayo Clinic Proceedings, 98(2), 301–315. https://doi.org/10.1016/j.mayocp.2022.09.007
  • Molet, S., Belleguic, C., Lena, H., Germain, N., Bertrand, C. P., Shapiro, S. D., Planquois, J. M., Delaval, P., & Lagente, V. (2005). Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflammation Research, 54(1), 31–36. https://doi.org/10.1007/s00011-004-1319-4
  • Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: A dynamic balance. Nature Reviews Immunology, 13(10), 709–721. https://doi.org/10.1038/nri3520
  • Morissette, M. C., Shen, P., Thayaparan, D., & Stämpfli, M. R. (2015). Disruption of pulmonary lipid homeostasis drives cigarette smoke-induced lung inflammation in mice. European Respiratory Journal, 46(5), 1451–1460. https://doi.org/10.1183/09031936.00216914
  • Morsch, A. L. B. C., Wisniewski, E., Luciano, T. F., Comin, V. H., Silveira, G. D. B., Marques, S. D. O., Thirupathi, A., Silveira Lock, P. C., & De Souza, C. T. (2019). Cigarette smoke exposure induces ROS-mediated autophagy by regulating sestrin, AMPK, and mTOR level in mice. Redox Report, 24(1), 27–33. https://doi.org/10.1080/13510002.2019.1601448
  • Nauta, A. J., Raaschou-Jensen, N., Roos, A., Daha, M., Madsen, H., Borrias‐Essers, M., Ryder, L., Koch, C., & Garred, P. (2003). Mannose-binding lectin engagement with late apoptotic and necrotic cells. European Journal of Immunology, 33(10), 2853–2863. https://doi.org/10.1002/eji.200323888
  • Navratilova, Z., Zatloukal, J., Kriegova, E. V. A., Kolek, V., & Petrek, M. (2012). Simultaneous up-regulation of matrix metalloproteinases 1, 2, 3, 7, 8, 9 and tissue inhibitors of metalloproteinases 1, 4 in serum of patients with chronic obstructive pulmonary disease. Respirology, 17(6), 1006–1012. https://doi.org/10.1111/j.1440-1843.2012.02197.x
  • Neupane, A. S., Willson, M., Chojnacki, A. K., Vargas E Silva Castanheira, F., Morehouse, C., Carestia, A., Keller, A. E., Peiseler, M., DiGiandomenico, A., Kelly, M. M., Amrein, M., Jenne, C., Thanabalasuriar, A., & Kubes, P. (2020). Patrolling alveolar macrophages conceal bacteria from the Immune System to Maintain Homeostasis. Cell, 183(1), 110–25.e11. https://doi.org/10.1016/j.cell.2020.08.020
  • Noguera, A., Batle, S., Miralles, C., Iglesias, J., Busquets, X., MacNee, W., & Agustí, A. G. N. (2001). Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax, 56(6), 432–437. https://doi.org/10.1136/thx.56.6.432
  • Nucera, F., Mumby, S., Paudel, K. R., Dharwal, V., Distefano, A., Casolaro, V., Hansbro, P. M., Adcock, I. M., & Caramori, G. (2022). Role of oxidative stress in the pathogenesis of COPD. Minerva Medica, 113(3). https://doi.org/10.23736/S0026-4806.22.07972-1
  • O’Beirne, S. L., Kikkers, S. A., Oromendia, C., Salit, J., Rostmai, M. R., Ballman, K. V., Kaner, R. J., Crystal, R. G. & Cloonan, S. M. (2020). Alveolar macrophage immunometabolism and lung function impairment in smoking and chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 201(6), 735–739. https://doi.org/10.1164/rccm.201908-1683LE
  • O’Croinin, D. F., Nichol, A. D., Hopkins, N., Boylan, J., O’Brien, S., O’Connor, C., Laffey, J. G., & McLoughlin, P. (2008). Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury*. Critical Care Medicine, 36(7), 2128–2135. https://doi.org/10.1097/CCM.0b013e31817d1b59
  • Ogden, C. A., Decathelineau, A., Hoffmann, P. R., Bratton, D., Ghebrehiwet, B., Fadok, V. A., & Henson, P. M. (2001). C1q and mannose binding lectin engagement of cell surface calreticulin and Cd91 Initiates Macropinocytosis and Uptake of Apoptotic Cells. The Journal of Experimental Medicine, 194(6), 781–796. https://doi.org/10.1084/jem.194.6.781
  • Osadnik, C. R., Tee, V. S., Carson-Chahhoud, K. V., Picot, J., Wedzicha, J. A., & Smith, B. J. (2017). Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews, 2017(7). https://doi.org/10.1002/14651858.CD004104.pub4
  • Osoata, G. O., Yamamura, S., Ito, M., Vuppusetty, C., Adcock, I. M., Barnes, P. J., & Ito, K. (2009). Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochemical and Biophysical Research Communications, 384(3), 366–371. https://doi.org/10.1016/j.bbrc.2009.04.128
  • Ouimet, M., Barrett, T. J., & Fisher, E. A. (2019). Hdl and reverse cholesterol transport. Circulation Research, 124(10), 1505–1518. https://doi.org/10.1161/CIRCRESAHA.119.312617
  • Owens, R. L., Derom, E., & Ambrosino, N. (2023). Supplemental oxygen and noninvasive ventilation. European Respiratory Review, 32(167), 220159. https://doi.org/10.1183/16000617.0159-2022
  • Pallazola, A. M., Rao, J. X., Mengistu, D. T., Morcos, M. S., Toma, M. S., Stolberg, V. R., Tretyakova, A., McCloskey, L., Curtis, J. L., & Freeman, C. M. (2021). Human lung cDC1 drive increased perforin-mediated NK cytotoxicity in chronic obstructive pulmonary disease. American Journal of Physiology-Lung Cellular and Molecular Physiology, 321(6), L1183–L1193. https://doi.org/10.1152/ajplung.00322.2020
  • Park, S. Y., Yoo, K. H., Park, Y. B., Rhee, C. K., Park, J., Park, H. Y., Hwang, Y. I., Park, D. A., & Sim, Y. S. (2022). The Long-term efficacy of domiciliary noninvasive positive-pressure ventilation in chronic obstructive pulmonary disease: A meta-analysis of randomized controlled trials. Tuberculosis and Respiratory Diseases, 85(1), 47–55. https://doi.org/10.4046/trd.2021.0062
  • Pascual-González, Y., López-Sánchez, M., Dorca, J., & Santos, S. (2018). Defining the role of neutrophil-to-lymphocyte ratio in COPD: A systematic literature review. International Journal of Chronic Obstructive Pulmonary Disease, 13, 3651–3662. https://doi.org/10.2147/COPD.S178068
  • Pehote, G., Bodas, M., Brucia, K., & Vij, N. (2017). Cigarette smoke exposure inhibits bacterial killing via TFEB-Mediated autophagy impairment and resulting phagocytosis defect. Mediators of Inflammation, 2017, 1–14. https://doi.org/10.1155/2017/3028082
  • Peng, Z., Huang, S., Liao, L., Lv, X., Guo, D., Liao, L., Huang, S., & Peng, Z. (2023). The effects of ginkgo biloba extract on autophagy in human macrophages stimulated by cigarette smoke extract. Frontiers in Bioscience-Landmark, 28(3), 50. https://doi.org/10.31083/j.fbl2803050
  • Pichavant, M., Rémy, G., Bekaert, S., Le Rouzic, O., Kervoaze, G., Vilain, E., Just, N., Tillie-Leblond, I., Trottein, F., Cataldo, D., & Gosset, P. (2014). Oxidative stress-mediated iNKT-cell activation is involved in COPD pathogenesis. Mucosal Immunology, 7(3), 568–578. https://doi.org/10.1038/mi.2013.75
  • Pidwill, G. R., Gibson, J. F., Cole, J., Renshaw, S. A., & Foster, S. J. (2021). The role of macrophages in staphylococcus aureus infection. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.620339
  • Pinkston, R., Penn, A. L., & Noël, A. (2023). Increased oxidative stress responses in murine macrophages exposed at the air-liquid interface to third- and fourth-generation electronic nicotine delivery system (ENDS) aerosols. Toxicology Reports, 11, 40–57. https://doi.org/10.1016/j.toxrep.2023.06.008
  • Prager, I., & Watzl, C. (2019). Mechanisms of natural killer cell-mediated cellular cytotoxicity. Journal of Leukocyte Biology, 105(6), 1319–1329. https://doi.org/10.1002/JLB.MR0718-269R
  • Preston, J. A., Bewley, M. A., Marriott, H. M., McGarry Houghton, A., Mohasin, M., Jubrail, J., Morris, L., Stephenson, Y. L., Cross, S., Greaves, D. R., Craig, R. W., van Rooijen, N., Bingle, C. D., Read, R. C., Mitchell, T. J., Whyte, M. K. B., Shapiro, S. D., & Dockrell, D. H. (2019). Alveolar macrophage apoptosis–associated bacterial killing helps prevent murine pneumonia. American Journal of Respiratory and Critical Care Medicine, 200(1), 84–97. https://doi.org/10.1164/rccm.201804-0646OC
  • Prieto, A., Reyes, E., Bernstein, E. D., Martinez, B., Monserrat, J., Izquierdo, J., Callol, L., de Lucas, P., Alvarez-Sala, R., Alvarez-Sala, J., Villarrubia, V., & ALVAREZ-MON, M. (2001). Defective natural killer and phagocytic activities in chronic obstructive pulmonary disease are restored by Glycophosphopeptical (Inmunoferón). American Journal of Respiratory and Critical Care Medicine, 163(7), 1578–1583. https://doi.org/10.1164/ajrccm.163.7.2002015
  • Pu, J., Yi, Q., Luo, Y., Wei, H., Ge, H., Liu, H., Li, X., Zhang, J., Pan, P., Zhou, H., Zhou, C., Yi, M., Cheng, L., Liu, L., Zhang, J., Peng, L., Aili, A., Liu, Y., & Zhou, H. (2023). Blood eosinophils and clinical outcomes in inpatients with acute exacerbation of chronic obstructive pulmonary disease: A prospective cohort study. International Journal of Chronic Obstructive Pulmonary Disease, 18, 169–179. https://doi.org/10.2147/COPD.S396311
  • Qian, Q., Cao, X., Wang, B., Qu, Y., Qian, Q., Sun, Z., & Feng, F. (2018). Retracted TNF-α–TNFR signal pathway inhibits autophagy and promotes apoptosis of alveolar macrophages in coal worker’s pneumoconiosis. Journal of Cellular Physiology, 234(5), 5953–5963. https://doi.org/10.1002/jcp.27061
  • Rabe, K. F., Martinez, F. J., Ferguson, G. T., Wang, C., Singh, D., Wedzicha, J. A., Trivedi, R., St. Rose, E., Ballal, S., McLaren, J., Darken, P., Aurivillius, M., Reisner, C., & Dorinsky, P. (2020). Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD. New England Journal of Medicine, 383(1), 35–48. https://doi.org/10.1056/NEJMoa1916046
  • Ramakrishnan, S., Jeffers, H., Langford-Wiley, B., Davies, J., Thulborn, S. J., Mahdi, M., A’Court, C., Binnian, I., Bright, S., Cartwright, S., Glover, V., Law, A., Fox, R., Jones, A., Davies, C., Copping, D., Russell, R. E., & Bafadhel, M. (2024). Blood eosinophil-guided oral prednisolone for COPD exacerbations in primary care in the UK (STARR2): A non-inferiority, multicentre, double-blind, placebo-controlled, randomised controlled trial. The Lancet Respiratory Medicine, 12(1), 67–77. https://doi.org/10.1016/S2213-2600(23)00298-9
  • Reddy-Vari, H., Kim, Y., Rajput, C., & Sajjan, U. S. (2023). Increased expression of miR146a dysregulates TLR2-induced HBD2 in airway epithelial cells from patients with COPD. ERJ Open Research, 9(3), 00694–2022. https://doi.org/10.1183/23120541.00694-2022
  • Rennard, S. I., Dale, D. C., Donohue, J. F., Kanniess, F., Magnussen, H., Sutherland, E. R., Watz, H., Lu, S., Stryszak, P., Rosenberg, E., & Staudinger, H. (2015). CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 191(9), 1001–1011. https://doi.org/10.1164/rccm.201405-0992OC
  • Richmond, B. W., Mansouri, S., Serezani, A., Novitskiy, S., Blackburn, J. B., Du, R.-H., Fuseini, H., Gutor, S., Han, W., Schaff, J., Vasiukov, G., Xin, M. K., Newcomb, D. C., Jin, L., Blackwell, T. S., & Polosukhin, V. V. (2021). Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunology, 14(2), 431–442. https://doi.org/10.1038/s41385-020-00344-9
  • Rong, B., Liu, Y., & Li, M., Fu, T, Gao, W, Liu, H. (2018). Correlation of serum levels of HIF-1α and IL-19 with the disease progression of COPD: A retrospective study. International Journal of Chronic Obstructive Pulmonary Disease, 13, 3791–3803. https://doi.org/10.2147/COPD.S177034
  • Rui, C., Defu, L., Lingling, W., Jiahui, D., Richeng, X., Yuanyuan, Y., Zhenhui, G., & Wenjie, H. (2022). Cigarette smoke or motor vehicle exhaust exposure induces PD-L1 upregulation in lung epithelial cells in COPD Model Rats. COPD: Journal of Chronic Obstructive Pulmonary Disease, 19(1), 206–215. https://doi.org/10.1080/15412555.2022.2058924
  • Russo, C., Colaianni, V., Ielo, G., Valle, M. S., Spicuzza, L., & Malaguarnera, L. (2022). Impact of lung microbiota on COPD. Biomedicines, 10(6), 1337. https://doi.org/10.3390/biomedicines10061337
  • Rutgers, S. R., Timens, W., Kaufmann, H. F., van der Mark, T. W., Koëter, G. H., & Postma, D. S. (2000). Comparison of induced sputum with bronchial wash, bronchoalveolar lavage and bronchial biopsies in COPD. European Respiratory Journal, 15(1), 109–115. https://doi.org/10.1183/09031936.00.15110900
  • Ryan, E. M., Sadiku, P., Coelho, P., Watts, E. R., Zhang, A., Howden, A. J. M., Sanchez-Garcia, M. A., Bewley, M., Cole, J., McHugh, B. J., Vermaelen, W., Ghesquiere, B., Carmeliet, P., Rodriguez Blanco, G., Von Kriegsheim, A., Sanchez, Y., Rumsey, W., Callahan, J. F., … Whyte, M. K. B. (2023). NRF2 activation reprograms defects in oxidative metabolism to restore macrophage function in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 207(8), 998–1011. https://doi.org/10.1164/rccm.202203-0482OC
  • Ryan, S., Taylor, C. T., & Mcnicholas, W. T. (2009). Systemic inflammation: A key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Postgraduate Medical Journal, 85(1010), 693–698. https://doi.org/10.1136/thx.2008.105577
  • Ryu, M. H., Yun, J. H., Morrow, J. D., Saferali, A., Castaldi, P., Chase, R., Stav, M., Xu, Z., Barjaktarevic, I., Han, M., Labaki, W., Huang, Y. J., Christenson, S., O’Neal, W., Bowler, R., Sin, D. D., Freeman, C. M., Curtis, J. L., & Hersh, C. P. (2023). Blood gene expression and immune cell subtypes associated with chronic obstructive pulmonary disease exacerbations. American Journal of Respiratory and Critical Care Medicine, 208(3), 247–255. https://doi.org/10.1164/rccm.202301-0085OC
  • Sales, D. S., Ito, J. T., Zanchetta, I. A., Annoni, R., Aun, M. V., Ferraz, L. F. S., Cervilha, D. A. B., Negri, E., Mauad, T., Martins, M. A., & Lopes, F. D. T. Q. S. (2017). Regulatory T-Cell distribution within lung compartments in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 14(5), 533–542. https://doi.org/10.1080/15412555.2017.1346069
  • Sami, R., Savari, M. A., Mansourian, M., Ghazavi, R., & Meamar, R. (2023). Effect of long-term oxygen therapy on reducing rehospitalization of patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Pulmonary Therapy, 9(2), 255–270. https://doi.org/10.1007/s41030-023-00221-3
  • Segura-Valdez, L., Pardo, A., Gaxiola, M., Uhal, B. D., Becerril, C., & Selman, M. (2000). Upregulation of gelatinases a and B, Collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest, 117(3), 684–694. https://doi.org/10.1378/chest.117.3.684
  • Seimetz, M., Parajuli, N., Pichl, A., Veit, F., Kwapiszewska, G., Weisel, F., Milger, K., Egemnazarov, B., Turowska, A., Fuchs, B., Nikam, S., Roth, M., Sydykov, A., Medebach, T., Klepetko, W., Jaksch, P., Dumitrascu, R., Garn, H., … Ghofrani, H. (2011). Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced emphysema and pulmonary hypertension in mice. Cell, 147(2), 293–305. https://doi.org/10.1016/j.cell.2011.08.035
  • Selfridge, A. C., Cavadas, M. A. S., Scholz, C. C., Campbell, E. L., Welch, L. C., Lecuona, E., Colgan, S. P., Barrett, K. E., Sporn, P. H. S., Sznajder, J. I., Cummins, E. P., & Taylor, C. T. (2016). Hypercapnia suppresses the HIF-dependent adaptive response to hypoxia. Journal of Biological Chemistry, 291(22), 11800–11808. https://doi.org/10.1074/jbc.M116.713941
  • Shah, A. J., Althobiani, M. A., Saigal, A., Ogbonnaya, C. E., Hurst, J. R., & Mandal, S. (2023). Wearable technology interventions in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Npj Digital Medicine, 6(1). https://doi.org/10.1038/s41746-023-00962-0
  • Sharma, G., Hanania, N. A., & Shim, Y. M. (2009). The Aging Immune System and its relationship to the development of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 6(7), 573–580. https://doi.org/10.1513/pats.200904-022RM
  • Shaw, A. C., Panda, A., Joshi, S. R., Qian, F., Allore, H. G., & Montgomery, R. R. (2011). Dysregulation of human Toll-like receptor function in aging. Ageing Research Reviews, 10(3), 346–353. https://doi.org/10.1016/j.arr.2010.10.007
  • Sileikiene, V., Laurinaviciene, A., Lesciute-Krilaviciene, D., Jurgauskiene, L., Malickaite, R., & Laurinavicius, A. (2019). Levels of CD4+ CD25+ T regulatory cells in bronchial mucosa and peripheral blood of chronic obstructive pulmonary disease indicate involvement of autoimmunity mechanisms. Advances in Respiratory Medicine, 87(3), 159–166. https://doi.org/10.5603/ARM.2019.0023
  • Silva, B. S. A., Lira, F. S., Ramos, D., Uzeloto, J. S., Rossi, F. E., Freire, A. P. C. F., Silva, R. N., Trevisan, I. B., Gobbo, L. A., & Ramos, E. M. C. (2018). Severity of COPD and its relationship with IL-10. Cytokine, 106, 95–100. https://doi.org/10.1016/j.cyto.2017.10.018
  • Simon, S., Joean, O., Welte, T., & Rademacher, J. (2023). The role of vaccination in COPD: influenza, SARS-CoV-2, pneumococcus, pertussis, RSV and varicella zoster virus. European Respiratory Review, 32(169), 230034. https://doi.org/10.1183/16000617.0034-2023
  • Singh, R., Belchamber, K. B. R., Fenwick, P. S., Chana, K., Donaldson, G., Wedzicha, J. A., Barnes, P. J., & Donnelly, L. E. (2021). Defective monocyte-derived macrophage phagocytosis is associated with exacerbation frequency in COPD. Respiratory Research, 22(1). https://doi.org/10.1186/s12931-021-01718-8
  • Soleimani, F., Dobaradaran, S., De la-Torre, G. E., Schmidt, T. C., & Saeedi, R. (2022). Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. Science of the Total Environment, 813, 152667. https://doi.org/10.1016/j.scitotenv.2021.152667
  • Sommariva, M., Le Noci, V., Bianchi, F., Camelliti, S., Balsari, A., Tagliabue, E., & Sfondrini, L. (2020). The lung microbiota: Role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cellular and Molecular Life Sciences, 77(14), 2739–2749. https://doi.org/10.1007/s00018-020-03452-8
  • Sonett, J., Goldklang, M., Sklepkiewicz, P., Gerber, A., Trischler, J., Zelonina, T., Westerterp, M., Lemaître, V., Okada, Y., & Armiento, J. D. (2018). A critical role for ABC transporters in persistent lung inflammation in the development of emphysema after smoke exposure. The FASEB Journal, 32(12), 6724–6736. https://doi.org/10.1096/fj.201701381
  • Sul, O. J., Choi, H. W., Oh, J., & Ra, S. W. (2023). GSPE attenuates CSE-induced lung inflammation and emphysema by regulating autophagy via the reactive oxygen species/TFEB signaling pathway. Food and Chemical Toxicology, 177, 113795. https://doi.org/10.1016/j.fct.2023.113795
  • Sun, S.-W., Chen, L., Zhou, M., Wu, J.-H., Meng, Z.-J., Han, H.-L., Miao, S.-Y., Zhu, C.-C., & Xiong, X.-Z. (2019). Bambi regulates macrophages inducing the differentiation of Treg through the TGF-β pathway in chronic obstructive pulmonary disease. Respiratory Research, 20(1). https://doi.org/10.1186/s12931-019-0988-z
  • Sun, S., Shen, Y., & Feng, J. (2022). Association of toll-like receptors polymorphisms with COPD risk in Chinese population. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.955810
  • Su, X., Wu, W., Zhu, Z., Lin, X., & Zeng, Y. (2022). The effects of epithelial–mesenchymal transitions in COPD induced by cigarette smoke: An update. Respiratory Research, 23(1). https://doi.org/10.1186/s12931-022-02153-z
  • Sze, M. A., Dimitriu, P. A., Suzuki, M., McDonough, J. E., Campbell, J. D., Brothers, J. F., Erb-Downward, J. R., Huffnagle, G. B., Hayashi, S., Elliott, W. M., Cooper, J., Sin, D. D., Lenburg, M. E., Spira, A., Mohn, W. W., & Hogg, J. C. (2015). Host Response to the lung microbiome in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 192(4), 438–445. https://doi.org/10.1164/rccm.201502-0223OC
  • Tang, Y., Li, X., Wang, M., Zou, Q., Zhao, S., Sun, B., Xu, L., & Jiang, Y. (2013). Increased numbers of NK Cells, NKT-Like Cells, and NK Inhibitory Receptors in peripheral blood of patients with chronic obstructive pulmonary disease. Clinical & developmental immunology, 2013, 1–8. https://doi.org/10.1155/2013/721782
  • Tashkin, D. P., & Wechsler, M. E. (2018). Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 13, 335–349. https://doi.org/10.2147/COPD.S152291
  • Thatcher, T. H., Hansen, M. J., Chan, S. P. J., Dousha, L. F., Jones, J. E., Yatmaz, S., Seow, H. J., Vlahos, R., Anderson, G. P., & Bozinovski, S. (2014). IL-17A and Serum Amyloid a Are Elevated in a cigarette smoke cessation Model associated with the persistence of pigmented macrophages, Neutrophils and activated NK cells. PLoS One, 9(11), e113180. https://doi.org/10.1371/journal.pone.0113180
  • Troosters, T., Janssens, W., Demeyer, H., & Rabinovich, R. A. (2023). Pulmonary rehabilitation and physical interventions. European Respiratory Review, 32(168), 220222. https://doi.org/10.1183/16000617.0222-2022
  • Vestbo, J., Anderson, J. A., Brook, R. D., Calverley, P. M. A., Celli, B. R., Crim, C., Martinez, F., Yates, J., & Newby, D. E. (2016). Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): A double-blind randomised controlled trial. The Lancet, 387(10030), 1817–1826. https://doi.org/10.1016/S0140-6736(16)30069-1
  • Vogelmeier, C. F., Criner, G. J., Martinez, F. J., Anzueto, A., Barnes, P. J., Bourbeau, J., Celli, B. R., Chen, R., Decramer, M., Fabbri, L. M., Frith, P., Halpin, D. G., López Varela, M. V., Nishimura, M., Roche, N., Rodriguez-Roisin, R., Sin, D. D., Singh, D., … Wedzicha, J. A. (2017). Global strategy for the diagnosis, management, and Prevention of Chronic Obstructive Lung disease 2017 Report: GOLD Executive summary. The European Respiratory Journal, 49(3), 1700214. https://doi.org/10.1183/13993003.00214-2017
  • Wang, L., Chen, X., Li, X., Liu, D., Wang, X., Chang, X., & Guo, Y. (2021). Developing a novel strategy for COPD therapy by targeting Nrf2 and metabolism reprogramming simultaneously. Free Radical Biology and Medicine, 169, 436–445. https://doi.org/10.1016/j.freeradbiomed.2021.03.039
  • Wang, P., Geng, J., Gao, J., Zhao, H., Li, J., Shi, Y., Yang, B., Xiao, C., Linghu, Y., Sun, X., Chen, X., Hong, L., Qin, F., Li, X., Yu, J.-S., You, H., Yuan, Z., Zhou, D., Johnson, R. L., & Chen, L. (2019). Macrophage achieves self-protection against oxidative stress-induced ageing through the mst-Nrf2 axis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08680-6
  • Wang, K., Liao, Y., Li, X., Wang, R., Zeng, Z., Cheng, M., Gao, L., Xu, D., Wen, F., Wang, T., & Chen, J. (2023). Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease. International Immunopharmacology, 114, 109537. https://doi.org/10.1016/j.intimp.2022.109537
  • Wang, G., Ma, A., Zhang, L., Guo, J, Liu, Q, Petersen, F, Wang, Z, Yu, X. (2022). Acute exacerbations of chronic obstructive pulmonary disease in a cohort of Chinese never smokers goes along with decreased risks of recurrent acute exacerbation, emphysema and comorbidity of lung cancer as well as decreased levels of circulating eosinophils and basophils. Frontiers in Medicine, 9, 907893. https://doi.org/10.3389/fmed.2022.907893
  • Wang, Y., & Tang, M. (2019). PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environmental Pollution, 254. https://doi.org/10.1016/j.envpol.2019.07.105
  • Wang, L., Wang, D., Zhang, T., Ma, Y., Tong, X., & Fan, H. (2023). The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1117548
  • Wang, C., XU, J., Yang, L., Xu, Y., Zhang, X., Bai, C., Kang, J., Ran, P., Shen, H., Wen, F., Huang, K., Yao, W., Sun, T., Shan, G., Yang, T., Lin, Y., Wu, S., Zhu, J., … Liang, L. (2018). Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China pulmonary Health [CPH] study): A national cross-sectional study. The Lancet, 391(10131), 1706–1717. https://doi.org/10.1016/S0140-6736(18)30841-9
  • Watzl, C., & Long, E. O. (2010). Signal Transduction during activation and inhibition of natural killer cells. Current Protocols in Immunology, 90(1). https://doi.org/10.1002/0471142735.im1109bs90
  • Wei, Y., Giunta, S., & Xia, S. (2022). Hypoxia in aging and aging-related diseases: Mechanism and therapeutic strategies. International Journal of Molecular Sciences, 23(15), 8165. https://doi.org/10.3390/ijms23158165
  • Wettschureck, N., Strilic, B., & Offermanns, S. (2019). Passing the vascular barrier: Endothelial signaling processes controlling extravasation. Physiological Reviews, 99(3), 1467–1525. https://doi.org/10.1152/physrev.00037.2018
  • Wigerblad, G., & Kaplan, M. J. (2022). Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nature Reviews Immunology, 23(5), 274–288. https://doi.org/10.1038/s41577-022-00787-0
  • Wouters, E. F. M., Posthuma, R., Koopman, M., Liu, W.-Y., Sillen, M. J., Hajian, B., Sastry, M., Spruit, A. M., & Franssen, F. M. (2020). An update on pulmonary rehabilitation techniques for patients with chronic obstructive pulmonary disease. Expert Review of Respiratory Medicine, 14(2), 149–161. https://doi.org/10.1080/17476348.2020.1700796
  • Wu, H., Ma, H., Wang, L., Zhang, H., Lu, L., Xiao, T., Cheng, C., Wang, P., Yang, Y., Wu, M., Wang, S., Zhang, J., & Liu, Q. (2022). Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. International Journal of Biological Sciences, 18(2), 661–674. https://doi.org/10.7150/ijbs.65861
  • Wu, J., Zhao, X., Xiao, C., Xiong, G., Ye, X., Li, L., Fang, Y., Chen, H., Yang, W., & Du, X. (2022). The role of lung macrophages in chronic obstructive pulmonary disease. Respiratory Medicine, 205, 107035. https://doi.org/10.1016/j.rmed.2022.107035
  • Xander, N., Reddy Vari, H., Eskandar, R., Li, W., Bolla, S., Marchetti, N., & Sajjan, U. S. (2019). Rhinovirus-induced SIRT-1 via TLR2 Regulates Subsequent Type I and Type III IFN responses in airway epithelial cells. Journal of Immunology, 203(9), 2508–2519. https://doi.org/10.4049/jimmunol.1900165
  • Xu, L., & Dong, Z. (2022). LINC00599 influences smoke-related chronic obstructive pulmonary disease and regulates CSE-induced epithelial cell apoptosis and inflammation by targeting miR-212-5p/BASP1 axis. Human & Experimental Toxicology, 41. https://doi.org/10.1177/09603271221146790
  • Xue, Q., Xie, Y., He, Y., Yu, Y., Fang, G., Yu, W., Wu, J., Li, J., Zhao, L., Deng, X., Li, R., Wang, F., Zheng, Y., & Gao, Z. (2023). Lung microbiome and cytokine profiles in different disease states of COPD: A cohort study. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32901-0
  • Xu, S., Hui, Y., Shu, J., Qian, J., & Li, L. (2019). Characterization of the human mucin 5AC promoter and its regulation by the histone acetyltransferase P300. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2019.4054
  • Xu, X., Yu, T., Dong, L., Glauben, R., Wu, S., Huang, R., Qumu, S., Chang, C., Guo, J., Pan, L., Yang, T., Lin, X., Huang, K., Chen, Z., & Wang, C. (2023). Eosinophils promote pulmonary matrix destruction and emphysema via cathepsin L. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01634-x
  • Xu, S.-W., Zhang, Y.-J., Liu, W.-M., Zhang, X.-F., Wang, Y., Xiang, S.-Y., Su, J.-C., & Liu, Z.-B. (2023). Cigarette smoke extract-induced inflammatory response via inhibition of the TFEB-mediated autophagy in NR8383 cells. Experimental Lung Research, 49(1), 39–48. https://doi.org/10.1080/01902148.2022.2164674
  • Yoshida, M., Minagawa, S., Araya, J., Sakamoto, T., Hara, H., Tsubouchi, K., Hosaka, Y., Ichikawa, A., Saito, N., Kadota, T., Sato, N., Kurita, Y., Kobayashi, K., Ito, S., Utsumi, H., Wakui, H., Numata, T., Kaneko, Y., … Imai, H. (2019). Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10991-7
  • Young, D., Das, N., Anowai, A., & Dufour, A. (2019). Matrix metalloproteases as influencers of the Cells’ Social Media. International Journal of Molecular Sciences, 20(16), 3847. https://doi.org/10.3390/ijms20163847
  • Yun, J. H., Lamb, A., Chase, R., Singh, D., Parker, M. M., Saferali, A., Vestbo, J., Tal-Singer, R., Castaldi, P. J., Silverman, E. K., Hersh, C. P., Crapo, J. D., Silverman, E. K., Make, B. J., Regan, E. A., Beaty, T., Begum, F., Busch, R., … Wouters, E. (2018). Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 141(6), 2037–47.e10. https://doi.org/10.1016/j.jaci.2018.04.010
  • Zeng, X.-L., Yang, X.-N., & Liu, X.-J. (2022). Resveratrol attenuates cigarette smoke extract induced cellular senescence in human airway epithelial cells by regulating the miR-34a/SIRT1/NF-κB pathway. Medicine, 101(46), e31944. https://doi.org/10.1097/MD.0000000000031944
  • Zhang, Y., Wang, L., Yan, F., Yang, M., Gao, H., & Zeng, Y. (2023). Mettl3 Mediated m6A Methylation Involved in Epithelial-Mesenchymal transition by targeting SOCS3/STAT3/SNAI1 in cigarette smoking-induced COPD. International Journal of Chronic Obstructive Pulmonary Disease, 18, 1007–1017. https://doi.org/10.2147/COPD.S398289
  • Zhang, H.-X., Yang, J.-J., Zhang, S.-A., Zhang, SM, Wang, JX, Xu, ZY, Lin, RY. (2018). HIF-1α promotes inflammatory response of chronic obstructive pulmonary disease by activating EGFR/PI3K/AKT pathway. European Review for Medical & Pharmacological Sciences. 22 (18), 6077–6084. https://doi.org/10.26355/eurrev_201809_15946
  • Zhang, D., Zhang, H., Li, X., Lei, S., Wang, L., Guo, W., & Li, J. (2021). Pulmonary rehabilitation programmes within three days of hospitalization for acute exacerbation of chronic obstructive pulmonary disease: A systematic review and meta-analysis. International Journal of Chronic Obstructive Pulmonary Disease, 16, 3525–3538. https://doi.org/10.2147/COPD.S338074
  • Zhao, X., Feng, X., Liu, P., Ye, J., Tao, R., Li, R., Shen, B., Zhang, X., Wang, X., & Zhao, D. (2022). Abnormal expression of CD96 on natural killer cell in peripheral blood of patients with chronic obstructive pulmonary disease. The Clinical Respiratory Journal, 16(8), 546–554. https://doi.org/10.1111/crj.13523
  • Zhu, K., Zhou, S., Xu, A., Sun, L., Li, M., Jiang, H., Zhang, B., Zeng, D., Fei, G., & Wang, R. (2020). Microbiota imbalance contributes to COPD deterioration by enhancing IL-17a production via miR-122 and miR-30a. Molecular Therapy - Nucleic Acids, 22, 520–529. https://doi.org/10.1016/j.omtn.2020.09.017
  • Zuo, W.-L., Yang, J., Gomi, K., Chao, I., Crystal, R. G., & Shaykhiev, R. (2017). EGF-amphiregulin interplay in airway stem/progenitor cells links the pathogenesis of smoking-induced lesions in the human airway epithelium. Stem Cells, 35(3), 824–837. https://doi.org/10.1002/stem.2512

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.