924
Views
50
CrossRef citations to date
0
Altmetric
Original

Review of the Ocular Angiogenesis Animal Models

, &
Pages 52-61 | Published online: 02 Jul 2009

REFERENCES

  • Michaelson I C. The mode of development of the vascular system of the retina. With some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 1948; 68: 137
  • Patz A. Retinal neovascularisation: Early contributions of Professor Michaelson and recent observations. British Journal of Ophthalmology 1984; 68: 42–46
  • Ashton N, Ward B, Serpell G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol 1954; 38: 397–432
  • Ashton N. Animal experiments in retrolental fibroplasia. Trans Am Acad Ophthalmol Otolaryngol 1954; 58: 51–3, discussion, 53–4
  • Gyllensten L J, Hellstrom B E. Experimental approach to the pathogenesis of retrolental fibroplasia. I. Changes of the eye induced by exposure of newborn mice to concentrated oxygen. Acta Paediatr Suppl 1954; 43: 131–148
  • Imre G. Studies on the mechanism of retinal neovascularization. Role of lactic acid. Br J Ophthalmol 1964; 48: 75–82
  • Baum J L, Wise G N. Experimental subretinal neovascularization. Transactions of the American Ophthalmological Society 1965; 63: 91–107
  • Cogan D G. Vascularization of the cornea; ats experimental induction by small lesions and a new theory of its pathogenesis. Archives of Ophthalmology 1949; 41: 406–416
  • Maurice D M, Zauberman H, Michaelson I C. The stimulus to neovascularization in the cornea. Exp Eye Res 1966; 5: 168–184
  • Gimbrone M A, Leapman S B, Cotran R S, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972; 136: 261–276
  • Gimbrone M A, Jr., Cotran R S, Leapman S B, Folkman J. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J Natl Cancer Inst 1974; 52: 413–427
  • Shing Y, Folkman J, Haudenschild C, Lund D, Crum R, Klagsbrun M. Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor. J Cell Biochem 1985; 29: 275–287
  • Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235: 442–447
  • Rogers M S, Birsner A E, D'Amato R J. The mouse cornea micropocket angiogenesis assay. Nat Protoc 2007; 2: 2545–2550
  • Ausprunk D H, Knighton D R, Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 1975; 79: 597–618
  • Folkman J. Tumor angiogenesis factor. Cancer Res 1974; 34: 2109–2113
  • Ryan S J. The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 1979; 77: 707–745
  • Ryan S J. Subretinal neovascularization. Natural history of an experimental model. Arch Ophthalmol 1982; 100: 1804–1809
  • Miller H, Miller B. Photodynamic therapy of subretinal neovascularization in the monkey eye. Arch Ophthalmol 1993; 111: 855–860
  • Miller J W, Walsh A W, Kramer M, et al. Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol 1995; 113: 810–818
  • Virdi P S, Hayreh S S. Ocular neovascularization with retinal vascular occlusion. I. Association with experimental retinal vein occlusion. Arch Ophthalmol 1982; 100: 331–341
  • Hayreh S S, Lata G F. Ocular neovascularization. Experimental animal model and studies on angiogenic factor(s). Int Ophthalmol 1986; 9: 109–120
  • Packer A J, Gu X Q, Servais E G, Hayreh S S. Primate model of neovascular glaucoma. Int Ophthalmol 1986; 9: 121–127
  • Miller J W, Adamis A P, Shima D T, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994; 145: 574–584
  • Pierce E A, Avery R L, Foley E D, Aiello L P, Smith L E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 1995; 92: 905–909
  • Ishibashi T, Hata Y, Yoshikawa H, Nakagawa K, Sueishi K, Inomata H. Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 1997; 235: 159–167
  • Pierce E A, Foley E D, Smith L E. Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol 1996; 114: 1219–1228
  • Kang S G, Chung H, Hyon J Y. Experimental preretinal neovascularization by laser-induced thrombosis in albino rats. Korean J Ophthalmol 1999; 13: 65–70
  • Saito Y, Park L, Skolik S A, et al. Experimental preretinal neovascularization by laser-induced venous thrombosis in rats. Curr Eye Res 1997; 16: 26–33
  • Shen W, He S, Han S, Ma Z. Preretinal neovascularisation induced by photodynamic venous thrombosis in pigmented rat. Aust N Z J Ophthalmol 1996; 24: 50–52
  • Zauberman H, Michaelson I C, Bergmann F, Maurice D M. Stimulation of neovascularization of the cornea by biogenic amines. Exp Eye Res 1969; 8: 77–83
  • Kenyon B M, Voest E E, Chen C C, Flynn E, Folkman J, D'Amato R J. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 1996; 37: 1625–1632
  • Loughman M S, Chatzistefanou K, Gonzalez E M, et al. Experimental corneal neovascularisation using sucralfate and basic fibroblast growth factor. Aust N Z J Ophthalmol 1996; 24: 289–295
  • Corrent G, Roussel T J, Tseng S C, Watson B D. Promotion of graft survival by photothrombotic occlusion of corneal neovascularization. Arch Ophthalmol 1989; 107: 1501–1506
  • Williams K A, Grutzmacher R D, Roussel T J, Coster D J. A comparison of the effects of topical cyclosporine and topical steroid on rabbit corneal allograft rejection. Transplantation 1985; 39: 242–244
  • Usui T, Yamagami S, Kishimoto S, Seiich Y, Nakayama T, Amano S. Role of macrophage migration inhibitory factor in corneal neovascularization. Invest Ophthalmol Vis Sci 2007; 48: 3545–3550
  • Ambati B K, Joussen A M, Kuziel W A, Adamis A P, Baum A J. Inhibition of corneal neovascularization by genetic ablation of CCR2. Cornea 2003; 22: 465–467
  • Hosseini H, Nejabat M, Mehryar M, Yazdchi T, Sedaghat A, Noori F. Bevacizumab inhibits corneal neovascularization in an alkali burn induced model of corneal angiogenesis. Clin Experiment Ophthalmol 2007; 35: 745–748
  • Azar D T. Corneal angiogenic privilege: Angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 2006; 104: 264–302
  • Moromizato Y, Stechschulte S, Miyamoto K, et al. CD18 and ICAM-1-dependent corneal neovascularization and inflammation after limbal injury. Am J Pathol 2000; 157: 1277–1281
  • Francois J, De Laey J J, Cambie E, Hanssens M, Victoria-Troncoso V. Neovascularization after argon laser photocoagulation of macular lesions. Am J Ophthalmol 1975; 79: 206–210
  • Fine S L, Patz A, Orth D H, Klein M L, Finkelstein D, Yassur Y. Subretinal neovascularization developing after prophylactic argon laser photocoagulation of atrophic macular scars. Am J Ophthalmol 1976; 82: 352–357
  • Archer D B, Gardiner T A. Morphologic fluorescein angiographic, and light microscopic features of experimental choroidal neovascularization. Am J Ophthalmol 1981; 91: 297–311
  • Archer D B, Gardiner T A. Electron microscopic features of experimental choroidal neovascularization. Am J Ophthalmol 1981; 91: 433–457
  • elDirini A A, Ogden T E, Ryan S J. Subretinal endophotocoagulation. A new model of subretinal neovascularization in the rabbit. Retina 1991; 11: 244–249
  • Dobi E T, Puliafito C A, Destro M. A new model of experimental choroidal neovascularization in the rat. Arch Ophthalmol 1989; 107: 264–269
  • Frank R N, Das A, Weber M L. A model of subretinal neovascularization in the pigmented rat. Curr Eye Res 1989; 8: 239–247
  • Tobe T, Ortega S, Luna J D, et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 1998; 153: 1641–1646
  • Campa C, Kasman I, Ye W, Lee W, Fuh G, Ferrara N. Effects of an anti-VEGF-A monoclonal antibody on laser-induced choroidal neovascularization in mice: Optimizing methods to quantify vascular changes. Investigative Ophthalmology & Visual Science 2008; 49: 1178–1183
  • Lassota N, Kiilgaard J F, la Cour M, Scherfig E, Prause J U. Natural history of choroidal neovascularization after surgical induction in an animal model. Acta Ophthalmol 2008; 86: 495–503
  • Krzystolik M G, Afshari M A, Adamis A P, et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Archives of Ophthalmology 2002; 120: 338–346
  • Marneros A G, She H, Zambarakji H, et al. Endogenous endostatin inhibits choroidal neovascularization. The FASEB Journal 2007; 21: 3809–3818
  • D'amato R, Wesolowski E, Smith L E. Microscopic visualization of the retina by angiography with high-molecular-weight fluorescein-labeled dextrans in the mouse. Microvascular Research 1993; 46: 135–142
  • Lassota N, Kiilgaard J F, Prause J U, Qvortrup K, Scherfig E, la Cour M. Surgical induction of choroidal neovascularization in a porcine model. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1189–1198
  • Kimura H, Sakamoto T, Hinton D R, et al. A new model of subretinal neovascularization in the rabbit. Investigative Ophthalmology & Visual Science 1995; 36: 2110–2119
  • Ni M, Holland M, Jarstadmarken H, De Vries G. Time-course of experimental choroidal neovascularization in Dutch-Belted rabbit: Clinical and histological evaluation. Exp Eye Res 2005; 81: 286–297
  • Zhu Z R, Goodnight R, Sorgente N, Ogden T E, Ryan S J. Experimental subretinal neovascularization in the rabbit. Graefes Arch Clin Exp Ophthalmol 1989; 227: 257–262
  • Qiu G, Stewart J, Sadda S, et al. A new model of experimental subretinal neovascularization in the rabbit. Experimental Eye Research 2006; 83: 141–152
  • Framme C, Sachs H G, Kobuch K, Flucke B, Birngruber R. Clinical evaluation of experimentally induced choroidal neovascularizations in pigmented rabbits by subretinal injection of lipid hydroperoxide and consecutive preliminary photodynamic treatment with Tookad. Ophthalmologica 2008; 222: 254–264
  • Tano Y, Chandler D B, Machemer R. Retinal neovascularization after intravitreal fibroblast injection. Am J Ophthalmol 1981; 92: 103–109
  • Antoszyk A N, Gottlieb J L, Machemer R, Hatchell D L. The effects of intravitreal triamcinolone acetonide on experimental pre-retinal neovascularization. Graefes Arch Clin Exp Ophthalmol 1993; 231: 34–40
  • Rakoczy P E, Brankov M, Fonceca A, Zaknich T, Rae B C, Lai C M. Enhanced recombinant adeno-associated virus-mediated vascular endothelial growth factor expression in the adult mouse retina: A potential model for diabetic retinopathy. Diabetes 2003; 52: 857–863
  • Okamoto N, Tobe T, Hackett S F, et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 1997; 151: 281–291
  • Miller J W. Vascular endothelial growth factor and ocular neovascularization. Am J Pathol 1997; 151: 13–23
  • Tobe T, Okamoto N, Vinores M A, et al. Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest Ophthalmol Vis Sci 1998; 39: 180–188
  • Ohno-Matsui K, Hirose A, Yamamoto S, et al. Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol 2002; 160: 711–719
  • Lai C M, Dunlop S A, May L A, et al. Generation of transgenic mice with mild and severe retinal neovascularisation. Br J Ophthalmol 2005; 89: 911–916
  • Ricci B. Oxygen-induced retinopathy in the rat model. Doc Ophthalmol 1990; 74: 171–177
  • Holmes J M, Zhang S, Leske D A, Lanier W L. The effect of carbon dioxide on oxygen-induced retinopathy in the neonatal rat. Curr Eye Res 1997; 16: 725–732
  • Holmes J M, Duffner L A. The effect of postnatal growth retardation on abnormal neovascularization in the oxygen exposed neonatal rat. Curr Eye Res 1996; 15: 403–409
  • Smith L E, Wesolowski E, Mclellan A, et al. Oxygen-induced retinopathy in the mouse. Investigative Ophthalmology & Visual Science 1994; 35: 101–111
  • Brooks S E, Gu X, Samuel S, et al. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Investigative Ophthalmology & Visual Science 2001; 42: 222–228
  • McLeod D S, Brownstein R, Lutty G A. Vaso-obliteration in the canine model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 1996; 37: 300–311
  • Cao R, Jensen L, Söll I, Hauptmann G, Cao Y. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLoS ONE 2008; 3: e2748
  • Sakamoto T, Sanui H, Ishibashi T, et al. Subretinal neovascularization in the rat induced by IRBP synthetic peptides. Exp Eye Res 1994; 58: 155–160
  • Stallard H B. The histological appearances of an eye successfully treated by diathermy for retinal detachment. Fatal termination from pulmonary thrombosis on the nineteenth day after operation. Br J Ophthalmol 1933; 17: 294–297
  • Irvine A R, Wood I S. Radiation retinopathy as an experimental model for ischemic proliferative retinopathy and rubeosis iridis. Am J Ophthalmol 1987; 103: 790–797
  • Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–288
  • Waisbourd M, Loewenstein A, Goldstein M, Leibovitch I. Targeting vascular endothelial growth factor: A promising strategy for treating age-related macular degeneration. Drugs Aging 2007; 24: 643–662
  • Ferrara N, Mass R D, Campa C, Kim R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 2007; 58: 491–504
  • Barouch F C, Miller J W. Potential future targets for treating ocular neovascularization. Ophthalmol Clin North Am 2006; 19: 401–409
  • Renno R Z, Youssri A I, Michaud N, Gragoudas E S, Miller J W. Expression of pigment epithelium-derived factor in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2002; 43: 1574–1580
  • Kim I K, Husain D, Michaud N, et al. Effect of intravitreal injection of ranibizumab in combination with verteporfin PDT on normal primate retina and choroid. Invest Ophthalmol Vis Sci 2006; 47: 357–363
  • Husain D, Kim I, Gauthier D, et al. Safety and efficacy of intravitreal injection of ranibizumab in combination with verteporfin PDT on experimental choroidal neovascularization in the monkey. Arch Ophthalmol 2005; 123: 509–516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.