2,650
Views
4
CrossRef citations to date
0
Altmetric
Review

Radiation retinopathy intricacies and advances in management

, , &
Pages 417-435 | Received 11 Oct 2021, Accepted 24 Oct 2021, Published online: 07 Dec 2021

References

  • Giuliari GP, Sadaka A, Hinkle DM, Simpson ER. Current treatments for radiation retinopathy. Acta Oncol. 2011;50(1):6–13. doi:10.3109/0284186X.2010.500299.
  • Stallard HB Radiant Energy as (a) a Pathogenic (b) a Therapeutic Agent in Ophthalmic Disorders. Pulman; 1933.
  • Moore RF. Choroidal sarcoma treated by the intraocular insertion of radon seeds. Br J Ophthalmol. 1930;14(4):145–152. doi:10.1136/bjo.14.4.145.
  • Merriam Grj REESEAB, He MARTIN. Treatment of bilateral retinoblastoma by irradiation and surgery; report on 15-year results. Am J Ophthalmol. 1949;32(2):175–190. doi:10.1016/0002-9394(49)90132-4.
  • Pa CIBIS, Brown DV. Retinal changes following ionizing radiation. Am J Ophthalmol. 1955;40(5 Pt 2):84–88. doi:10.1016/0002-9394(55)91840-7.
  • Dg COGAN. Lesions of the eye from radiant energy. JAMA. 1950;142(3):145–151. doi:10.1001/jama.1950.02910210001001.
  • Stallard HB. Radiotherapy of malignant intra-ocular neoplasms. Br J Ophthalmol. 1948;32(9):618–639. doi:10.1136/bjo.32.9.618.
  • Stallard HB. Radiotherapy for malignant melanoma of the choroid. Br J Ophthalmol. 1966;50(3):147–155. doi:10.1136/bjo.50.3.147.
  • Chee PH. Radiation retinopathy. Am J Ophthalmol. 1968;66(5):860–865. doi:10.1016/0002-9394(68)92800-6.
  • Gass JD. A fluorescein angiographic study of macular dysfunction secondary to retinal vascular disease. VI. X-ray irradiation, carotid artery occlusion, collagen vascular disease, and vitritis. Archiv Ophthalmol. 1968;80(5):606–617. doi:10.1001/archopht.1968.00980050608006.
  • Bedford MA, Bedotto C, Macfaul PA. Radiation retinopathy after the application of a cobalt plaque. Report of three cases. Br J Ophthalmol. 1970;54(8):505–509. doi:10.1136/bjo.54.8.505.
  • Macfaul PA, Bedford MA. Ocular complications after therapeutic irradiation. Br J Ophthalmol. 1970;54(4):237–247. doi:10.1136/bjo.54.4.237.
  • Amoaku WM, Archer DB. Cephalic radiation and retinal vasculopathy. Eye (Lond). 1990;4(Pt 1):195–203. doi:10.1038/eye.1990.26.
  • Brown GC, Shields JA, Sanborn G, Augsburger JJ, Savino PJ, Schatz NJ. Radiation retinopathy. Ophthalmology. 1982;89(12):1494–1501. doi:10.1016/s0161-6420(82)34611-4.
  • Bianciotto C, Shields CL, Pirondini C, Mashayekhi A, Furuta M, Shields JA. Proliferative radiation retinopathy after plaque radiotherapy for uveal melanoma. Ophthalmology. 2010;117(5):1005–1012. doi:10.1016/j.ophtha.2009.10.015.
  • Viebahn M, Barricks ME, Osterloh MD. Synergism between diabetic and radiation retinopathy: case report and review. Br J Ophthalmol. 1991;75(10):629–632. doi:10.1136/bjo.75.10.629.
  • Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Radiation retinopathy after external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30(4):765–773. doi:10.1016/0360-3016(94)90347-6.
  • Merriam GR, Szechter A, Focht EF. The Effects of Ionizing Radiations on the Eye1. Front Radiat Ther Oncol. 1972;346–385. doi:10.1159/000392817.
  • Archer DB, Amoaku WM, Gardiner TA. Radiation retinopathy–clinical, histopathological, ultrastructural and experimental correlations. Eye (Lond). 1991;5(Pt 2):239–251. doi:10.1038/eye.1991.39.
  • Archer DB, Gardiner TA. Ionizing radiation and the retina. Curr Opin Ophthalmol. 1994;5(3):59–65. doi:10.1097/00055735-199406000-00011.
  • Zamber RW, Kinyoun JL. Radiation retinopathy. West J Med. 1992;157:530–533.
  • Irvine AR, Alvarado JA, Wara WM, Morris BW, Wood IS. Radiation retinopathy: an experimental model for the ischemic–proliferative retinopathies. Trans Am Ophthalmol Soc. 1981;79:103–122.
  • Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112(18):E2395–402. doi:10.1073/pnas.1500185112.
  • Db A. Doyne Lecture. Responses of retinal and choroidal vessels to ionising radiation. Eye (Lond). 1993;7(Pt 1):1–13. doi:10.1038/eye.1993.3.
  • Bagan SM, Hollenhorst RW. Radiation retinopathy after irradiation of intracranial lesions. Am J Ophthalmol. 1979;88(4):694–697. doi:10.1016/0002-9394(79)90667-6.
  • Horgan N, Shields CL, Mashayekhi A, Teixeira LF, Materin MA, Shields JA. Early macular morphological changes following plaque radiotherapy for uveal melanoma. Retina (Philadelphia, Pa). 2008;28(2):263–273. doi:10.1097/IAE.0b013e31814b1b75.
  • Finger PT, Kurli M. Laser photocoagulation for radiation retinopathy after ophthalmic plaque radiation therapy. Br J Ophthalmol. 2005;89(6):730–738. doi:10.1136/bjo.2004.052159.
  • Finger PT. Radiation therapy for choroidal melanoma. Surv Ophthalmol. 1997;42(3):215–232. doi:10.1016/s0039-6257(97)00088-x.
  • Servodidio CA, Abramson DH. Acute and long-term effects of radiation therapy to the eye in children. Cancer Nurs. 1993;16(5):371–381. doi:10.1097/00002820-199310000-00006.
  • Perrers-Taylor M, Brinkley D, Choroido-Retinal RT. Damage as A Complication of Radiotherapy. Acta Radiol Ther Phys Biol. 1965;3(6):431–440. doi:10.3109/02841866509133117.
  • Durkin SR, Roos D, Higgs B, Casson RJ, Selva D. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2007;85(3):240–250. doi:10.1111/j.1600-0420.2006.00822.x.
  • Bessell EM, Henk JM, Whitelocke RA, Wright JE. Ocular morbidity after radiotherapy of orbital and conjunctival lymphoma. Eye (Lond). 1987;1(Pt 1):90–96. doi:10.1038/eye.1987.14.
  • Ferrufino-Ponce ZK, Henderson BA. Radiotherapy and cataract formation. Semin Ophthalmol. 2006;21(3):171–180. doi:10.1080/08820530500351728.
  • Thome C, Chambers DB, Hooker AM, Thompson JW, Boreham DR. Deterministic Effects to the Lens of the Eye Following Ionizing Radiation Exposure: is There Evidence to Support a Reduction in Threshold Dose? Health physics. 2018;114(3):328–343. doi:10.1097/HP.0000000000000810.
  • Chodick G, Kleinerman RA, Stovall M, et al. Risk of cataract extraction among adult retinoblastoma survivors. Archiv Ophthalmol. 2009;127(11):1500–1504. doi:10.1001/archophthalmol.2009.271.
  • Fontanesi J, Pratt CB, Kun LE, Hustu HO, Coffey D, Meyer D. Treatment outcome and dose-response relationship in infants younger than 1 year treated for retinoblastoma with primary irradiation. Med Pediat Oncol. 1996;26(5):297–304. doi:10.1002/(SICI)1096-911X(199605)26:5<297::AID-MPO1>3.0.CO;2-D.
  • Gordon KB, Char DH, Sagerman RH. Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys. 1995;31(5):1123–1139. doi:10.1016/0360-3016(95)00062-4.
  • Parsons JT, Fitzgerald CR, Hood CI, Ellingwood KE, Bova FJ, Million RR. The effects of irradiation on the eye and optic nerve. Int J Radiat Oncol Biol Phys. 1983;9(5):609–622. doi:10.1016/0360-3016(83)90225-0.
  • Hayreh SS. Post-radiation retinopathy. A fluorescence fundus angiographic study. Br J Ophthalmol. 1970;54(11):705–714. doi:10.1136/bjo.54.11.705.
  • Li M, Qiu G, Luo W, Ou J, Li X. Clinical investigation of radiation retinopathy fundus and fluorescein angiographic features. Yan Ke Xue Bao = Eye Science. 1999;15:183–186.
  • Amoaku WM, Archer DB. Fluorescein angiographic features, natural course and treatment of radiation retinopathy. Eye (Lond). 1990;4(Pt 5):657–667. doi:10.1038/eye.1990.93.
  • Marcus DF, Bovino JA, Williams D. Adverse reactions during intravenous fluorescein angiography. Archiv Ophthalmol. 1984;102(6):825. doi:10.1001/archopht.1984.01040030651010.
  • Stanga PE, Lim JI, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology. 2003;110(1):13–15. doi:10.1016/s0161-6420(02)01563-4.
  • Spaide RF, Borodoker N, Shah V. Atypical choroidal neovascularization in radiation retinopathy. Am J Ophthalmol. 2002;133(5):709–711. doi:10.1016/s0002-9394(02)01331-4.
  • Amoaku WMK, Lafaut B, Sallet G, de Laey JJ. Radiation choroidal vasculopathy: an indocyanine green angiography study. Eye. 1995;9(6):738–744. doi:10.1038/eye.1995.187.
  • Levitz LM. The use of optical coherence tomography to determine the severity of radiation retinopathy. Ophthalmic Surg Lasers Imag. 2005;36(5):410–411. doi:10.3928/1542-8877-20050901-10.
  • Midena G, Parrozzani R, Frizziero L, Midena E. Chorioretinal Side Effects of Therapeutic Ocular Irradiation: a Multimodal Imaging Approach. J Clin Med. 2020;9(11):3496. doi:10.3390/jcm9113496.
  • Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med. 2001;7(4):502–507. doi:10.1038/86589.
  • Ţălu S-D. . Tadeusiewicz R, Tang J, and Positano V eds. International Scholarly Research Notices. 2013 Optical Coherence Tomography in the Diagnosis and Monitoring of Retinal Diseases ;Vol. 2013:910641. 10.1155/2013/910641
  • Shah N, Sk H, Am M, Feuer W, Tg M. Early SD-OCT diagnosis followed by prompt treatment of radiation maculopathy using intravitreal bevacizumab maintains functional visual acuity. Clin Ophthalmol. 2012;6(1):1739–1748. doi:10.2147/OPTH.S34949.
  • Cennamo G, Breve MA, Velotti N, et al. Evaluation of Vascular Changes with Optical Coherence Tomography Angiography after Plaque Radiotherapy of Choroidal Melanoma. Ophthalmic Res. 2018;60(4):238–242. doi:10.1159/000490571.
  • Matet A, Daruich A, Zografos L. Radiation Maculopathy After Proton Beam Therapy for Uveal Melanoma: optical Coherence Tomography Angiography Alterations Influencing Visual Acuity. Invest Ophthalmol Vis Sci. 2017;58(10):3851–3861. doi:10.1167/iovs.17-22324.
  • Veverka KK, Abouchehade JE, Iezzi R, Pulido JS NONINVASIVE GRADING OF RADIATION RETINOPATHY The Use of Optical Coherence Tomography Angiography.
  • Shields CL, Say AT, Samara WA, Khoo CTL, Mashayekhi A, Shields JA Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma comparison of Irradiated Versus Nonirradiated Eyes in 65 Patients.
  • Naseripour M, Ghasemi Falavarjani K, Mirshahi R, Sedaghat A. Optical coherence tomography angiography (OCTA) applications in ocular oncology. Eye (Basingstoke). 2020;34(9):1535–1545. doi:10.1038/s41433-020-0819-y.
  • Li Z, Zhan Z, Xiao J, Radiation-Induced Optical LY. Coherence Tomography Angiography Retinal Alterations in Patients With Nasopharyngeal Carcinoma. Front Med (Lausanne). 2021;7. doi:10.3389/fmed.2020.630880.
  • Davila JR, Mruthyunjaya P. Updates in imaging in ocular oncology. F1000Res. 2019;8:1706. doi:10.12688/f1000research.19979.1.
  • Green KM, Toy BC, Ashimatey BS, et al. Quantifying Subclinical and Longitudinal Microvascular Changes Following Episcleral Plaque Brachytherapy Using Spectral Domain–Optical Coherence Tomography Angiography. J VitreoRet Diseases. 2020;4(6):499–508. doi:10.1177/2474126420936199.
  • Cennamo G, Montorio D, Bernardo R, et al. Retinal Vascular Changes in Radiation Maculopathy after Intravitreal Ranibizumab by Optical Coherence Tomography Angiography. J Clin Med. 2020;9(6):1618. doi:10.3390/jcm9061618.
  • Gupta A, Dhawahir-Scala F, Smith A, Young L, Charles S. Radiation Retinopathy: case report and review. BMC Ophthalmol. 2007;7(1):6. doi:10.1186/1471-2415-7-6.
  • Hong KH, Chang SD. A case of radiation retinopathy of left eye after radiation therapy of right brain metastasis. Korean J Ophthalmol. 2009;23(2):114–117. doi:10.3341/kjo.2009.23.2.114.
  • Bellerive C, Singh AD. Radiation Retinopathy 47 Years following Brachytherapy for Retinoblastoma. Ocul Oncol Pathol. 2018;4(3):157–160. doi:10.1159/000481312.
  • Lock JH, Fong KCS. Retinal laser photocoagulation. Med J Malaysia. 2010;65(1):88–94. quiz 95.
  • Chaudhuri PR, Austin DJ, Rosenthal AR. Treatment of radiation retinopathy. Br J Ophthalmol. 1981;65(9):623–625. doi:10.1136/bjo.65.9.623.
  • Augsburger JJ, Roth SE, Magargal LE, Shields JA. Panretinal photocoagulation for radiation-induced ocular ischemia. Ophthalmic Surg. 1987;18:589–593.
  • Kinyoun JL Long-term visual acuity results of treated and untreated radiation retinopathy (an AOS thesis). Transactions of the American Ophthalmological Society. 2008;106:325–335.
  • Missotten GSO, Notting IC, Schlingemann RO, et al. Vascular endothelial growth factor a in eyes with uveal melanoma. Archiv Ophthalmol. 2006;124(10):1428–1434. doi:10.1001/archopht.124.10.1428.
  • Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29(6):789–791. doi:10.1161/ATVBAHA.108.179663.
  • Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Rec Prog Horm Res. 2000;55:15–16.
  • Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996;103(11):1820–1828. doi:10.1016/s0161-6420(96)30420-x.
  • Tolentino MJ, Miller JW, Gragoudas ES, Chatzistefanou K, Ferrara N, Adamis AP. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Archiv Ophthalmol. 1996;114(8):964–970. doi:10.1001/archopht.1996.01100140172010.
  • Tolentino MJ, McLeod DS, Taomoto M, Otsuji T, Adamis AP, Lutty GA. Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am J Ophthalmol. 2002;133(3):373–385. doi:10.1016/s0002-9394(01)01381-2.
  • Malecaze F, Clamens S, Simorre-Pinatel V, et al. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Archiv Ophthalmol. 1994;112(11):1476–1482. doi:10.1001/archopht.1994.01090230090028.
  • Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–1487. doi:10.1056/NEJM199412013312203.
  • Pe’er J, Folberg R, Itin A, Gnessin H, Hemo I, Keshet E. Vascular endothelial growth factor upregulation in human central retinal vein occlusion. Ophthalmology. 1998;105(3):412–416. doi:10.1016/S0161-6420(98)93020-2.
  • Al-Latayfeh M, Silva PS, Sun JK, Aiello LP. Antiangiogenic therapy for ischemic retinopathies. Cold Spring Harb Perspect Med. 2012;2(6):a006411. doi:10.1101/cshperspect.a006411.
  • Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–1431. doi:10.1056/NEJMoa054481.
  • Shukla D, Namperumalsamy P, Goldbaum M, Cunningham ETJ. Pegaptanib sodium for ocular vascular disease. Indian J Ophthalmol. 2007;55(6):427–430. doi:10.4103/0301-4738.36476.
  • Ishida S, Usui T, Yamashiro K, et al. VEGF164 is proinflammatory in the diabetic retina. Investigative ophthalmology & visual science. 2003;44(5):2155–2162. doi:10.1167/iovs.02-0807.
  • Ishida S, Usui T, Yamashiro K, et al. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med. 2003;198(3):483–489. doi:10.1084/jem.20022027.
  • Dombi T, Kwok KK, Sultan MB. A retrospective, pooled data analysis of the safety of pegaptanib sodium in the treatment of age-related macular degeneration in subjects with or without diabetes mellitus. BMC Ophthalmol. 2012;12(1):37. doi:10.1186/1471-2415-12-37.
  • González VH, Giuliari GP, Banda RM, Guel DA. Intravitreal injection of pegaptanib sodium for proliferative diabetic retinopathy. Br J Ophthalmol. 2009;93(11):1474–1478. doi:10.1136/bjo.2008.155663.
  • Querques G, Bux AV, Ar F, Iaculli C, Delle NN. Pegaptanib Sodium versus Pegaptanib Sodium Combined with Macular Laser Photocoagulation or Laser Alone for Diabetic Macular Edema. J Ophthalmol. 2009;2009:672178. doi:10.1155/2009/672178.
  • Biagi C, Conti V, Montanaro N, et al. Comparative safety profiles of intravitreal bevacizumab, ranibizumab and pegaptanib: the analysis of the WHO database of adverse drug reactions. Eur J Clin Pharmacol. 2014;70(12):1505–1512. doi:10.1007/s00228-014-1755-1.
  • Querques G, Prascina F, Iaculli C, Delle Noci N. Intravitreal pegaptanib sodium (Macugen) for radiation retinopathy following episcleral plaque radiotherapy. Acta Ophthalmol. 2008;86(6):700–701. doi:10.1111/j.1600-0420.2007.01101.x.
  • Ross EL, Hutton DW, Stein JD, et al. Cost-effectiveness of Aflibercept, Bevacizumab, and Ranibizumab for Diabetic Macular Edema Treatment: analysis From the Diabetic Retinopathy Clinical Research Network Comparative Effectiveness Trial. JAMA Ophthalmol. 2016;134(8):888–896. doi:10.1001/jamaophthalmol.2016.1669.
  • Arriola-Villalobos P, Donate-López J, Calvo-González C, Reche-Frutos J, Alejandre-Alba N, Díaz-Valle D. Intravitreal bevacizumab (Avastin) for radiation retinopathy neovascularization. Acta Ophthalmol. 2008;86(1):115–116. doi:10.1111/j.1600-0420.2007.00977.x.
  • Solano JM, Bakri SJ, Pulido JS. Regression of radiation-induced macular edema after systemic bevacizumab. Can J Ophthalmol J Can D’ophtalmologie. 2007;42(5):748–749. doi:10.3129/i07-140.
  • Mason JO 3rd, Maj A, To P, Rs V. Intravitreal bevacizumab treatment for radiation macular edema after plaque radiotherapy for choroidal melanoma. Retina (Philadelphia, Pa). 2007;27(7):903–907. doi:10.1097/IAE.0b013e31806e6042.
  • Loukianou E, Brouzas D, Georgopoulou E, Koutsandrea C, Apostolopoulos M. Intravitreal bevacizumab for macular edema due to proton beam radiotherapy: favorable results shown after eighteen months follow-up. Ther Clin Risk Manag. 2010;6:249–252. doi:10.2147/tcrm.s7051.
  • Finger PT, Mukkamala SK. Intravitreal anti-VEGF bevacizumab (Avastin) for external beam related radiation retinopathy. Eur J Ophthalmol. 2011;21(4):446–451. doi:10.5301/EJO.2011.6213.
  • Sánchez-Vicente JL, Muñoz-Morales A, Galván-Carrasco MP, et al. Radiation maculopathy treated with intravitreal bevacizumab. Arch Soc Esp Oftalmol. 2017;92(6):283–286. doi:10.1016/j.oftal.2016.10.008.
  • Finger PT, Chin K. Anti-vascular endothelial growth factor bevacizumab (avastin) for radiation retinopathy. Archiv Ophthalmol. 2007;125(6):751–756. doi:10.1001/archopht.125.6.751.
  • Subrayan V, Khaw KW, Peyman M, Koay ACA, Tajunisah I. Intravitreal bevacizumab for radiation-induced cystoid macular oedema in patients with nasopharyngeal carcinoma: a clinical series. Ophthalmologica. 2013;229(4):208–211. doi:10.1159/000348630.
  • Finger PT. Radiation retinopathy is treatable with anti-vascular endothelial growth factor bevacizumab (Avastin). Int J Radiat Oncol Biol Phys. 2008;70(4):974–977. doi:10.1016/j.ijrobp.2007.11.045.
  • Mashayekhi A, Rojanaporn D, Al-Dahmash S, Shields CL, Shields JA. Monthly intravitreal bevacizumab for macular edema after iodine-125 plaque radiotherapy of uveal melanoma. Eur J Ophthalmol. 2014;24(2):228–234. doi:10.5301/ejo.5000352.
  • Gupta A, Muecke JS. Treatment of radiation maculopathy with intravitreal injection of bevacizumab (Avastin). Retina (Philadelphia, Pa). 2008;28(7):964–968. doi:10.1097/IAE.0b013e3181706302.
  • Khan MA, Mashayekhi A, Ferguson K, Shields JA, Shields CL. High-Dose (2.5 mg) Intravitreal Bevacizumab as Rescue Therapy for Persistent Postradiation Cystoid Macular Edema. Ocul Oncol Pathol. 2017;3(3):168–175. doi:10.1159/000448719.
  • Rosenfeld PJ, Schwartz SD, Blumenkranz MS, et al. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology. 2005;112(6):1048–1053. doi:10.1016/j.ophtha.2005.01.043.
  • Jutley G, Shona OA, Leen RC, Lee N, Olver JM, George SM. Response to ranibizumab following tachyphylaxis to bevacizumab in a patient with radiation maculopathy following stereotactic fractionated radiotherapy for optic nerve meningioma. Archiv Ophthalmol. 2012;130(11):1466–1470. doi:10.1001/archophthalmol.2012.1542.
  • Finger PT, Chin KJ. Intravitreous ranibizumab (lucentis) for radiation maculopathy. Archiv Ophthalmol. 2010;128(2):249–252. doi:10.1001/archophthalmol.2009.376.
  • Lin S, George BZ, Wilson-Holt NJ. Intravitreal ranibizumab (lucentis) for whole brain radiotherapy-induced maculopathy. Clin Oncol (R Coll Radiol). 2014;26(4):236–238. doi:10.1016/j.clon.2013.11.030.
  • Horowitz SA, Damasceno NP, Damasceno EF. Treatment of Radiation Retinopathy with Intravitreal Injection of Ranibizumab (Lucentis(®)). Int Med Case Rep J. 2020;13:27–32. doi:10.2147/IMCRJ.S191654.
  • Seibel I, Vollhardt D, Riechardt AI, et al. Influence of Ranibizumab versus laser photocoagulation on radiation retinopathy (RadiRet) - a prospective randomized controlled trial. Graefes Arch Clin Exp Ophthalmol. 2020;258(4):869–878. doi:10.1007/s00417-020-04618-7.
  • Finger PT, Chin KJ. High-dose (2.0 mg) intravitreal ranibizumab for recalcitrant radiation retinopathy. Eur J Ophthalmol. 2013;23(6):850–856. doi:10.5301/ejo.5000333.
  • Hykin P, Prevost AT, Vasconcelos JC, et al. Clinical Effectiveness of Intravitreal Therapy With Ranibizumab vs Aflibercept vs Bevacizumab for Macular Edema Secondary to Central Retinal Vein Occlusion: a Randomized Clinical Trial. JAMA Ophthalmol. 2019;137(11):1256–1264. doi:10.1001/jamaophthalmol.2019.3305.
  • Spooner K, Hong T, Nair R, et al. Long-term outcomes of switching to aflibercept for treatment-resistant neovascular age-related macular degeneration. Acta Ophthalmol. 2019;97(5):e706–e712. doi:10.1111/aos.14046.
  • Campos Polo R, Rubio Sánchez C, García Guisado DM, Díaz Luque MJ. Aflibercept for clinically significant diabetic macular edema: 12-month results in daily clinical practice. Clin Ophthalmol. 2018;12:99–104. doi:10.2147/OPTH.S154421.
  • Laiginhas R, Silva MI, Rosas V, et al. Aflibercept in diabetic macular edema refractory to previous bevacizumab: outcomes and predictors of success. Graefes Arch Clin Exp Ophthalmol. 2018;256(1):83–89. doi:10.1007/s00417-017-3836-1.
  • Yang LPH, McKeage K. Intravitreal aflibercept (Eylea(®)): a review of its use in patients with macular oedema secondary to central retinal vein occlusion. Drugs Aging. 2014;31(5):395–404. doi:10.1007/s40266-014-0176-2.
  • Stewart MW, Rosenfeld PJ. Predicted biological activity of intravitreal VEGF Trap. Br J Ophthalmol. 2008;92(5):667–668. doi:10.1136/bjo.2007.134874.
  • Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99(17):11393–11398. doi:10.1073/pnas.172398299.
  • Loukianou E, Loukianou G. Intravitreal Aflibercept in Recalcitrant Radiation Maculopathy due to External Beam Radiotherapy for Nasopharyngeal Cancer: a First Case Report. Case Rep Ophthalmol. 2017;8(1):87–90. doi:10.1159/000456535.
  • Khan MA, Mashayekhi A, Shields JA, Shields CL. Intravitreal Aflibercept as Rescue Therapy for Post-Radiation Cystoid Macular Edema Resistant to Intravitreal Bevacizumab: outcomes at 1 Year. Ocul Oncol Pathol. 2017;3(4):313–319. doi:10.1159/000452163.
  • Pooprasert P, Young-Zvandasara T, Al-Bermani A. Radiation retinopathy treated successfully with aflibercept. BMJ Case Rep. 2017;2017. doi:10.1136/bcr-2017-220744.
  • Karagiannis D, Kontomichos L, Georgalas I, Peponis V, Antoniou E, Parikakis E. Glioma-associated radiation retinopathy treated successfully with aflibercept. Ther Clin Risk Manag. 2019;15:937–941. doi:10.2147/TCRM.S204841.
  • Fallico M, Reibaldi M, Avitabile T, et al. Intravitreal aflibercept for the treatment of radiation-induced macular edema after ruthenium 106 plaque radiotherapy for choroidal melanoma. Graefes Arch Clin Exp Ophthalmol. 2019;257(7):1547–1554. doi:10.1007/s00417-019-04347-6.
  • Kitchens JW, Do DV, Ds B, et al. Comprehensive Review of Ocular and Systemic Safety Events with Intravitreal Aflibercept Injection in Randomized Controlled Trials. Ophthalmology. 2016;123(7):1511–1520. doi:10.1016/j.ophtha.2016.02.046.
  • Corradetti G, Corvi F, Juhn A, Sadda SVR. Short-term outcomes following treatment of recalcitrant cystoid macular edema secondary to radiation maculopathy using intravitreal brolucizumab. Am J Ophthalmol Case Rep. 2020;20((October)):100981. doi:10.1016/j.ajoc.2020.100981.
  • Markham, Anthony Brolucizumab: First Approval. Drugs. 2019;79(18):1997–2000. doi:10.1007/s40265-019-01231-9.
  • Holz FG, Dugel PU, Weissgerber G, et al. Single-Chain Antibody Fragment VEGF Inhibitor RTH258 for Neovascular Age-Related Macular Degeneration: a Randomized Controlled Study. Ophthalmology. 2016;123(5):1080–1089. doi:10.1016/j.ophtha.2015.12.030.
  • Dugel PU, Koh A, Ogura Y, et al. HAWK and HARRIER: phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2020;127(1):72–84. doi:10.1016/j.ophtha.2019.04.017.
  • Dugel PU, Singh RP, Koh A, et al. HAWK and HARRIER: ninety-Six-Week Outcomes from the Phase 3 Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2021;128(1):89–99. doi:10.1016/j.ophtha.2020.06.028.
  • Haug SJ, Hien DL, Uludag G, et al. Retinal arterial occlusive vasculitis following intravitreal brolucizumab administration. Am J Ophthalmol Case Rep. 2020;18:100680. doi:10.1016/j.ajoc.2020.100680.
  • Monés J, Srivastava SK, Jaffe GJ, et al. Risk of Inflammation, Retinal Vasculitis, and Retinal Occlusion-Related Events with Brolucizumab: post Hoc Review of HAWK and HARRIER. Ophthalmology. Published online. November 2020. doi:10.1016/j.ophtha.2020.11.011.
  • Baumal CR, Spaide RF, Vajzovic L, et al. Retinal Vasculitis and Intraocular Inflammation after Intravitreal Injection of Brolucizumab. Ophthalmology. 2020;127(10):1345–1359. doi:10.1016/j.ophtha.2020.04.017.
  • Montero JA, Yanez-Castro G, Sanchis-Merino ME, Ruiz-Moreno JM. Bevacizumab in vitreous haemorrhage secondary to radiation retinopathy. BMJ Case Rep. 2014;2014(feb06 2):bcr2013203177–bcr2013203177. doi:10.1136/bcr-2013-203177.
  • Dunavoelgyi R, Zehetmayer M, Simader C, Schmidt-Erfurth U. Rapid improvement of radiation-induced neovascular glaucoma and exudative retinal detachment after a single intravitreal ranibizumab injection. Clin Exp Ophthalmol. 2007;35(9):878–880. doi:10.1111/j.1442-9071.2007.01632.x.
  • Finger PT, Chin KJ. Antivascular endothelial growth factor bevacizumab for radiation optic neuropathy: secondary to plaque radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):789–798. doi:10.1016/j.ijrobp.2010.11.075.
  • Kim SJ, Hubbard GB 3rd. Intravitreal bevacizumab (avastin) for radiation retinopathy 53 years after treatment of retinoblastoma. Retin Cases Brief Rep. 2007;1(4):198–201. doi:10.1097/ICB.0b013e3180618c71.
  • Finger PT, Chin KJ, Semenova EA. Intravitreal anti-VEGF therapy for macular radiation retinopathy: a 10-year study. Eur J Ophthalmol. 2015;26(1):60–66. doi:10.5301/ejo.5000670.
  • Stacey AW, Demirci H. Serial Intravitreal Bevacizumab Injections Slow the Progression of Radiation Maculopathy Following Iodine-125 Plaque Radiotherapy. Open Ophthalmol J. 2016;10(1):103–110. doi:10.2174/1874364101610010103.
  • Daruich A, Matet A, Schalenbourg A, Zografos L. Intravitreal anti-vascular endothelial growth factor treatment at 2-month intervals reduces foveal avascular zone enlargement and vision loss in radiation maculopathy: a pilot study. Retina. 2019;39(8):1519–1526. doi:10.1097/IAE.0000000000002200.
  • Murray TG, Latiff A, Villegas VM, Gold AS. Aflibercept for Radiation Maculopathy Study: a Prospective, Randomized Clinical Study. Ophthalmol Retina. 2019;3(7):561–566. doi:10.1016/j.oret.2019.02.009.
  • Schefler AC, Fuller D, Anand R, et al. Randomized Trial of Monthly Versus As-Needed Intravitreal Ranibizumab for Radiation Retinopathy–Related Macular Edema: 1-Year Outcomes. Am J Ophthalmol. 2020;216:165–173. doi:10.1016/j.ajo.2020.03.045.
  • Khanna S, Komati R, Eichenbaum DA, Hariprasad I, Ciulla TA, Hariprasad SM. Current and upcoming anti-VEGF therapies and dosing strategies for the treatment of neovascular AMD: a comparative review. BMJ Open Ophthalmol. 2019;4(1):1–8. doi:10.1136/bmjophth-2019-000398.
  • Intravitreal Aflibercept Injection for Radiation Retinopathy Trial (ARRT). Accessed February 16, 2021. https://clinicaltrials.gov/ct2/show/record/NCT03085784
  • Mantel I, Schalenbourg A, Bergin C, Petrovic A, Weber DC, Zografos L. Prophylactic use of bevacizumab to avoid anterior segment neovascularization following proton therapy for uveal melanoma. Am J Ophthalmol. 2014;158(4):693–701.e2. doi:10.1016/j.ajo.2014.07.002.
  • Shah SU, Shields CL, Bianciotto CG, et al. Intravitreal bevacizumab at 4-month intervals for prevention of macular edema after plaque radiotherapy of uveal melanoma. Ophthalmology. 2014;121(1):269–275. doi:10.1016/j.ophtha.2013.08.039.
  • Shields CL, Dalvin LA, Chang M, et al. Visual Outcome at 4 Years Following Plaque Radiotherapy and Prophylactic Intravitreal Bevacizumab (Every 4 Months for 2 Years) for Uveal Melanoma: comparison with Nonrandomized Historical Control Individuals. JAMA Ophthalmol. 2020;138(2):136–146. doi:10.1001/jamaophthalmol.2019.5132.
  • Chang M, Dalvin LA, Mazloumi M, et al. Prophylactic Intravitreal Bevacizumab After Plaque Radiotherapy for Uveal Melanoma: analysis of Visual Acuity, Tumor Response, and Radiation Complications in 1131 Eyes Based on Patient Age. Asia Pac J Ophthalmol (Phila). 2020;9(1):29–38. doi:10.1097/APO.0000000000000271.
  • Powell BE, Finger PT. Anti–VEGF Therapy Immediately after Plaque Radiation Therapy Prevents or Delays Radiation Maculopathy. Ophthalmol Retina. 2020;4(5):547–550. doi:10.1016/j.oret.2020.01.010.
  • Na Bin HMY, Ar G, Th B, Le K, Ac M. Choroidal melanoma treated with stereotactic fractionated radiotherapy and prophylactic intravitreal bevacizumab: the Dunedin Hospital experience. J Med Imaging Radiat Oncol. 2016;60(6):756–763. doi:10.1111/1754-9485.12489.
  • Kim IK, Lane AM, Jain P, Awh C, Gragoudas ES. Ranibizumab for the Prevention of Radiation Complications in Patients Treated With Proton Beam Irradiation for Choroidal Melanoma. Trans Am Ophthalmol Soc. 2016;114:T2.
  • Brito IAS, Zacharias LC, Pimentel SLG. Fellow Eye Macular Edema Improvement after Intravitreal Bevacizumab for Radiation Retinopathy. Case Rep Ophthalmol Med. 2015;2015:516921. doi:10.1155/2015/516921.
  • Caruso A, Füth M, Alvarez-Sánchez R, et al. Ocular Half-Life of Intravitreal Biologics in Humans and Other Species: meta-Analysis and Model-Based Prediction. Mol Pharm. 2020;17(2):695–709. doi:10.1021/acs.molpharmaceut.9b01191.
  • Bakri SJ, Snyder MR, Reid JM, Pulido JS, Singh RJ. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology. 2007;114(5):855–859. doi:10.1016/j.ophtha.2007.01.017.
  • Sinapis CI, Routsias JG, Sinapis AI, et al. Pharmacokinetics of intravitreal bevacizumab (Avastin®) in rabbits. Clin Ophthalmol. 2011;5:697–704. doi:10.2147/OPTH.S19555.
  • Bakri SJ, Snyder MR, Reid JM, Pulido JS, Ezzat MK, Singh RJ. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 2007;114(12):2179–2182. doi:10.1016/j.ophtha.2007.09.012.
  • Gaudreault J, Fei D, Beyer JC, et al. Pharmacokinetics and retinal distribution of ranibizumab, a humanized antibody fragment directed against VEGF-A, following intravitreal administration in rabbits. Retina (Philadelphia, Pa). 2007;27(9):1260–1266. doi:10.1097/IAE.0b013e318134eecd.
  • Park SJ, Choi Y, Na YM, et al. Intraocular Pharmacokinetics of Intravitreal Aflibercept (Eylea) in a Rabbit Model. Invest Ophthalmol Vis Sci. 2016;57(6):2612–2617. doi:10.1167/iovs.16-19204.
  • Niwa Y, Kakinoki M, Sawada T, Wang X, Ranibizumab OM. Aflibercept: intraocular Pharmacokinetics and Their Effects on Aqueous VEGF Level in Vitrectomized and Nonvitrectomized Macaque Eyes. Invest Ophthalmol Vis Sci. 2015;56(11):6501–6505. doi:10.1167/iovs.15-17279.
  • Avery RL, Castellarin AA, Steinle NC, et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina (Philadelphia, Pa). 2017;37(10):1847–1858. doi:10.1097/IAE.0000000000001493.
  • Edington M, Connolly J, Chong NV. Pharmacokinetics of intravitreal anti-VEGF drugs in vitrectomized versus non-vitrectomized eyes. Exp Opin Drug Metabol Toxicol. 2017;13(12):1217–1224. doi:10.1080/17425255.2017.1404987.
  • Antcliff RJ, Spalton DJ, Stanford MR, Graham EM, Ffytche TJ, Marshall J. Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study. Ophthalmology. 2001;108(4):765–772. doi:10.1016/s0161-6420(00)00658-8.
  • Jonas JB, Kreissig I, Söfker A, Degenring RF. Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Archiv Ophthalmol. 2003;121(1):57–61. doi:10.1001/archopht.121.1.57.
  • Sutter FKP, Gillies MC. Intravitreal triamcinolone for radiation-induced macular edema. Arch Ophthalmol. 2003;121(10):1491–1493. doi:10.1001/archopht.121.10.1491.
  • Shields CL, Demirci H, Dai V, et al. Intravitreal triamcinolone acetonide for radiation maculopathy after plaque radiotherapy for choroidal melanoma. Retina. 2005;25(7):868–874. doi:10.1097/00006982-200510000-00009.
  • Shields CL, Demirci H, Marr BP, et al. Intravitreal triamcinolone acetonide for acute radiation papillopathy. Retina. 2006;26(5):537–544. doi:10.1097/00006982-200605000-00007.
  • Kocak N, Saatci AO, Arikan G, Bajin FMS. Combination of photodynamic therapy, intravitreal triamcinolone injection, and standard laser photocoagulation in radiation retinopathy: a case report. Ann Ophthalmol. 2006;38(3):243–247. doi:10.1007/s12009-006-0013-2.
  • Bakri SJ, Larson TA. The variable efficacy of intravitreal bevacizumab and triamcinolone acetonide for cystoid macular edema due to radiation retinopathy. Semin Ophthalmol. 2015;30(4):276–280. doi:10.3109/08820538.2013.847110.
  • Kaplan RI, Chaugule SS, Finger PT. Intravitreal triamcinolone acetate for radiation maculopathy recalcitrant to high-dose intravitreal bevacizumab. British J Ophthalmol. 2017;101(12):1694–1698. doi:10.1136/bjophthalmol-2017-310315.
  • Shah N, Sk H, Markoe A, Tg M. Combination therapy with triamcinolone acetonide and bevacizumab for the treatment of severe radiation maculopathy in patients with posterior uveal melanoma. Clin Ophthalmol. 2013;7:1877–1882. doi:10.2147/OPTH.S47684.
  • Gillies MC. Regulators of vascular permeability: potential sites for intervention in the treatment of macular edema. Documenta Ophthalmol Adv Ophthalmol. 1999;97(3–4):251–260. doi:10.1023/a:1002196930726.
  • Sivaprasad S, McCluskey P, Lightman S. Intravitreal steroids in the management of macular oedema. Acta Ophthalmol Scand. 2006;84(6):722–733. doi:10.1111/j.1600-0420.2006.00698.x.
  • Zhang X, Wang N, Schachat AP, Bao S, Gillies MC. Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med. 2014;14(3):376–384. doi:10.2174/1566524014666140128114414.
  • Conti SM, Kertes PJ. The use of intravitreal corticosteroids, evidence-based and otherwise. Curr Opin Ophthalmol. 2006;17(3):235–244. doi:10.1097/01.icu.0000193107.00089.ee.
  • Luo D, Zhu B, Zheng Z, Zhou H, Sun X, Subtenon XX. Vs Intravitreal Triamcinolone injection in Diabetic Macular Edema, A prospective study in Chinese population. Pak J Med Sci. 2014;30(4):749–754. doi:10.12669/pjms.304.4810.
  • Cellini M, Pazzaglia A, Zamparini E, Leonetti P, Campos EC. Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema. BMC Ophthalmol. 2008;8(1):5. doi:10.1186/1471-2415-8-5.
  • Horgan N, Shields CL, Mashayekhi A, et al. Periocular triamcinolone for prevention of macular edema after iodine 125 plaque radiotherapy of uveal melanoma. Retina. 2008;28(7):987–995. doi:10.1097/IAE.0b013e31816b3192.
  • Horgan N, Shields CL, Mashayekhi A, et al. Periocular Triamcinolone for Prevention of Macular Edema after Plaque Radiotherapy of Uveal Melanoma. A Randomized Controlled Trial. Ophthalmology. 2009;116(7):1383–1390. doi:10.1016/j.ophtha.2009.01.051.
  • Materin MA, Bianciotto CG, Wu C, Shields CL. Sector laser photocoagulation for the prevention of macular edema after plaque radiotherapy for uveal melanoma: a pilot study. Retina. 2012;32(8):1601–1607. doi:10.1097/IAE.0b013e3182437e70.
  • Menezo M, Roca M, Menezo V, Pascual I. Intravitreal dexamethasone implant Ozurdex in the treatment of diabetic macular edema in patients not previously treated with any intravitreal drug: a prospective 12-month follow-up study. Curr Med Res Opin. 2019;35(12):2111–2116. doi:10.1080/03007995.2019.1652449.
  • Garweg JG, Zandi S. Retinal vein occlusion and the use of a dexamethasone intravitreal implant (Ozurdex®) in its treatment. Graefes Arch Clin Exp Ophthalmol. 2016;254(7):1257–1265. doi:10.1007/s00417-016-3350-x.
  • Khurana RN, Porco TC. Efficacy and safety of dexamethasone intravitreal implant for persistent uveitic cystoid macular edema. Retina (Philadelphia, Pa). 2015;35(8):1640–1646. doi:10.1097/IAE.0000000000000515.
  • Baillif S, Maschi C, Gastaud P, Caujolle JP. Intravitreal dexamethasone 0.7-mg implant for radiation macular edema after proton beam therapy for choroidal melanoma. Retina. 2013;33(9):1784–1790. doi:10.1097/IAE.0b013e31829234fa.
  • Frizziero L, Parrozzani R, Trainiti S, et al. Intravitreal dexamethasone implant in radiation-induced macular oedema. British J Ophthalmol. 2017;101(12):1699–1703. doi:10.1136/bjophthalmol-2017-310220.
  • Russo A, Reibaldi M, Avitabile T, et al. Dexamethasone intravitreal implant vs ranibizumab in the treatment of macular edema secondary to brachytherapy for choroidal melanoma. Retina (Philadelphia, Pa). 2018;38(4):788–794. doi:10.1097/IAE.0000000000001585.
  • Russo A, Avitabile T, Uva M, et al. Radiation Macular Edema after Ru-106 Plaque Brachytherapy for Choroidal Melanoma Resolved by an Intravitreal Dexamethasone 0.7-mg Implant. Case Rep Ophthalmol. 2012;3(1):71–76. doi:10.1159/000337144.
  • Tarmann L, Langmann G, Mayer C, Weger M, Haas A, Ozurdex WW. ®) reduces the retinal thickness in radiation maculopathy refractory to bevacizumab. Acta Ophthalmol. 2014;92(8):e694–e696. doi:10.1111/aos.12424.
  • Bui KM, Chow CC, Mieler WF. Treatment of recalcitrant radiation maculopathy using intravitreal dexamethasone (ozurdex) implant. Retinal Cases Brief Rep. 2014;8(3):167–170. doi:10.1097/ICB.0000000000000032.
  • Caminal JM, Flores-Moreno I, Arias L, et al. Intravitreal dexamethasone implant for radiation maculopathy secondary to plaque brachytherapy in choroidal melanoma. Retina. 2015;35(9):1890–1897. doi:10.1097/IAE.0000000000000537.
  • Koc I, Kadayifcilar S, Kiratli H, Eldem B. Intravitreal dexamethasone (ozurdex) implant for radiation maculopathy secondary to stereotactic radiotherapy for posterior uveal melanoma. Retin Cases Brief Rep. 2019;13(4):352–356. doi:10.1097/ICB.0000000000000593.
  • Tservakis I, Koutsandrea C, Papaconstantinou D, Paraskevopoulos T, Georgalas I. Safety and efficacy of dexamethasone intravitreal implant (Ozurdex) for the treatment of persistent macular edema secondary to retinal vein occlusion in eyes previously treated with anti-vascular endothelial growth factors. Curr Drug Saf. 2015;10(2):145–151. doi:10.2174/1574886309666140805142245.
  • Seibel I, Hager A, Riechardt AI, Davids AM, Böker A, Joussen AM. Antiangiogenic or Corticosteroid Treatment in Patients With Radiation Maculopathy After Proton Beam Therapy for Uveal Melanoma. Am J Ophthalmol. 2016;168:31–39. doi:10.1016/j.ajo.2016.04.024.
  • Bakri SJ, Beer PM. Photodynamic therapy for maculopathy due to radiation retinopathy. Eye (Lond). 2005;19(7):795–799. doi:10.1038/sj.eye.6701637.
  • Bressler NM, Bressler SB. Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences. Invest Ophthalmol Vis Sci. 2000;41:624–628.
  • Miller JW, Walsh AW, Kramer M, et al. Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Archiv Ophthalmol. 1995;113(6):810–818. doi:10.1001/archopht.1995.01100060136048.
  • Bressler NM. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Archiv Ophthalmol. 2001;119:198–207.
  • Lee SC, Song JH, Chung EJ, Kwon OW. Photodynamic therapy of subretinal neovascularization in radiation retinopathy. Eye (Lond). 2004;18(7):745–746. doi:10.1038/sj.eye.6700736.
  • Stanford MR. Retinopathy after irradiation and hyperbaric oxygen. J R Soc Med. 1984;77(12):1041–1043. doi:10.1177/014107688407701211.
  • Borruat FX, Schatz NJ, Glaser JS, Feun LG, Matos L. Visual recovery from radiation-induced optic neuropathy. The role of hyperbaric oxygen therapy. J Clin Neuro-ophthalmol. 1993;13:98–101.
  • Oguz H, Sobaci G. The use of hyperbaric oxygen therapy in ophthalmology. Surv Ophthalmol. 2008;53(2):112–120. doi:10.1016/j.survophthal.2007.12.002.
  • Haji SA, Frenkel RE. Hyperbaric oxygen therapy for the treatment of radiation-induced macular ischemia. Clin Ophthalmol. 2010;4:433–436. doi:10.2147/opth.s9803.
  • Gall N, Leiba H, Handzel R, Pe’er J. Severe radiation retinopathy and optic neuropathy after brachytherapy for choroidal melanoma, treated by hyperbaric oxygen. Eye (Lond). 2007;21(7):1010–1012. doi:10.1038/sj.eye.6702820.
  • Schmetterer L, Kemmler D, Breiteneder H, et al. A randomized, placebo-controlled, double-blind crossover study of the effect of pentoxifylline on ocular fundus pulsations. Am J Ophthalmol. 1996;121(2):169–176. doi:10.1016/s0002-9394(14)70581-1.
  • Gupta P, Meisenberg B, Amin P, Pomeranz HD. Radiation retinopathy: the role of pentoxifylline. Retina (Philadelphia, Pa). 2001;21(5):545–547. doi:10.1097/00006982-200110000-00026.
  • Oliver SCN, Leu MY, DeMarco JJ, Chow PE, Lee SP, McCannel TA. Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma. Archiv Ophthalmol. 2010;128(7):888–893. doi:10.1001/archophthalmol.2010.117.
  • McCannel TA, McCannel CA. Iodine 125 brachytherapy with vitrectomy and silicone oil in the treatment of uveal melanoma: 1-to-1 matched case-control series. Int J Radiat Oncol Biol Phys. 2014;89(2):347–352. doi:10.1016/j.ijrobp.2014.02.021.
  • Ahuja Y, Kapoor KG, Thomson RM, et al. The effects of intraocular silicone oil placement prior to iodine 125 brachytherapy for uveal melanoma: a clinical case series. Eye (Lond). 2012;26(11):1487–1489. doi:10.1038/eye.2012.158.
  • Morrison H, Larocque MP, Menon G, Sloboda RS, Weis E. Delivered dose changes in COMS plaque-based ocular brachytherapy arising from vitrectomy with silicone oil replacement. Brachytherapy. 2019;18(5):668–674. doi:10.1016/j.brachy.2019.05.013.
  • Asadi S, Vaez-zadeh M, Masoudi SF, Rahmani F, Knaup C, Meigooni AS. Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye. J Appl Clin Med Phys. 2015;16(5):344–357. doi:10.1120/jacmp.v16i5.5568.
  • Ngwa W, Kumar R, Sridhar S, et al. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine (Lond). 2014;9(7):1063–1082. doi:10.2217/nnm.14.55.