667
Views
4
CrossRef citations to date
0
Altmetric
Review

‘The role of accommodative function in myopic development: A review.’

ORCID Icon, , , & ORCID Icon
Pages 455-461 | Received 01 Jul 2021, Accepted 01 Sep 2021, Published online: 25 Nov 2021

References

  • Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. May 1 2016;123(5):1036–1042. doi:10.1016/j.ophtha.2016.01.006.
  • Prousali E, Haidich A, Fontalis A, Ziakas N, Brazitikos P, Mataftsi A. Efficacy and safety of interventions to control myopia progression in children : an overview of systematic reviews and meta-analyses. BMC Ophthalmol. 2019;19(1):106. doi:10.1186/s12886-019-1112-3.
  • Smith EL, Hung L-F, Huang J, Blasdel TL, Humbird TL, Bockhorst KH. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci. 2010;51(8):3864–3873. doi:10.1167/iovs.09-4969.
  • Smith EL, Hung LF, Harwerth RS. Effects of optically induced blur on the refractive status of young monkeys. Vision Res. 1994;34(3):293–301. doi:10.1016/0042-6989(94)90088-4.
  • Troilo D, Smith EL, Nickla DL, et al. IMI – report on experimental models of emmetropization and myopia. Invest Ophthalmol Vis Sci. Feb 28 2019;60(3):M31–88. doi:10.1167/iovs.18-25967.
  • Motlagh M, Geetha R. Physiology, Accommodation. StatPearls: StatPearls Publishing; 2019.
  • Woodman-Pieterse EC, Read SA, Collins MJ, Alonso-Caneiro D. Anterior scleral thickness changes with accommodation in myopes and emmetropes. Exp Eye Res. 2018 Dec;1(177):96–103. doi:10.1016/j.exer.2018.07.023.
  • Lewis HA, Kao CY, Sinnott LT, Bailey MD. Changes in ciliary muscle thickness during accommodation in children. Optom Vis Sci. 2012 May;89(5):727–737. doi:10.1097/OPX.0b013e318253de7e.
  • Summers JA. The choroid as a sclera growth regulator. Exp Eye Res. 2013;114:120–127. doi:10.1016/j.exer.2013.03.008.
  • Xiong S, He X, Zhang BO, et al. Changes in choroidal thickness varied by age and refraction in children and adolescents: a 1-year longitudinal study. Am J Ophthalmol. 2020;213:46–56. doi:10.1016/j.ajo.2020.01.003.
  • Wagner S, Zrenner E, Strasser T. Emmetropes and myopes differ little in their accommodation dynamics but strongly in their ciliary muscle morphology. Vision Res. 2019 Oct;1(163):42–51. doi:10.1016/j.visres.2019.08.002.
  • Del Águila-Carrasco AJ, Kruger PB, Lara F, López-Gil N. Aberrations and accommodation. In: Clinical and Experimental Optometry, Vol. 103. Blackwell Publishing Ltd; 2020:95–103.
  • Hughes RPJ, Read SA, Collins MJ, Vincent SJ. Changes in ocular biometry during short-term accommodation in children. Ophthalmic Physiol Opt. 2020 Sep 1;40(5):584–594. doi:10.1111/opo.12711.
  • Drexler W, Findl O, Schmetterer L, Hitzenberger CK, Fercher AF. Eye elongation during accommodation in humans: differences between emmetropes and myopes. Invest Ophthalmol Vis Sci. 1998;39:2140–2147.
  • Atchison DA, Smith G. Possible errors in determining axial length changes during accommodation with the IOLMaster. Optom Vis Sci. 2004 Apr;81(4):283–286. doi:10.1097/00006324-200404000-00015.
  • Burns DH, Allen PM, Edgar DF, Evans BJW. Sources of error in clinical measurement of the amplitude of accommodation. J Optom. 2020 Jan 1;13(1):3–14. doi:10.1016/j.optom.2019.05.002.
  • Antona B, Barra F, Barrio A, Gonzalez E, Sanchez I. Repeatability intraexaminer and agreement in amplitude of accommodation measurements. Graefe’s Arch Clin Exp Ophthalmol. 2009;247(1):121–127. doi:10.1007/s00417-008-0938-9.
  • Esmail H, Arblaster G. A comparison of the conventional and modified push-up methods of measuring the near point of accommodation. Br Ir Orthopt J. 2016;13:35. doi:10.22599/bioj.100.
  • Bernal-Molina P, Vargas-Martín F, Thibos LN, López-Gil N. Influence of ametropia and its correction on measurement of accommodation. Investig Ophthalmol Vis Sci. 2016 Jun 1;57(7):3010–3016. doi:10.1167/iovs.15-18686.
  • Li M, Cheng H, Yuan Y, et al. Change in choroidal thickness and the relationship with accommodation following myopic excimer laser surgery. Eye (Lond). Jul 1 2016;30(7):972–978. doi:10.1038/eye.2016.75.
  • Hennessy RT, Iida T, Shiina K, Leibowitz HW. The effect of pupil size on accommodation. Vision Res. 1976 Jan 1;16(6):587–589. doi:10.1016/0042-6989(76)90004-3.
  • Gwiazda J, Thorn F, Bauer J, Held R. Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci. 1993;34:90–94.
  • Koomson NY, Amedo AO, Opoku-Baah C, Ampeh PB, Ankamah E, Bonsu K. Relationship between reduced accommodative lag and myopia progression. Optom Vis Sci. 2016 Jun 21;93(7):683–691. doi:10.1097/OPX.0000000000000867.
  • Berntsen DA, Sinnott LT, Mutti DO, Zadnik K. Accommodative lag and juvenile-onset myopia progression in children wearing refractive correction. Vision Res. 2011 May 11;51(9):1039–1046. doi:10.1016/j.visres.2011.02.016.
  • Weizhong L, Zhikuan Y, Wen L, Xiang C, Jian G. A longitudinal study on the relationship between myopia development and near accommodation lag in myopic children. Ophthalmic Physiol Opt. 2008 Jan;28(1):57–61. doi:10.1111/j.1475-1313.2007.00536.x.
  • Mutti DO, Mitchell GL, Jones-Jordan LA, et al. The response AC/A ratio before and after the onset of myopia. Investig Ophthalmol Vis Sci. Mar 1 2017;58(3):1594–1602. doi:10.1167/iovs.16-19093.
  • Ren Q, Yue H, Zhou Q. Effects of orthokeratology lenses on the magnitude of accommodative lag and accommodative convergence/accommodation. J Cent South Univ (Medical Sci. 2016 Feb 1;41(2):169–173.
  • O’Leary DJ, Allen PM. Facility of accommodation in myopia. Ophthalmic Physiol Opt. 2001;21(5):352–355. doi:10.1046/j.1475-1313.2001.00597.x.
  • Pandian A, Sankaridurg PR, Naduvilath T, et al. Accommodative facility in eyes with and without myopia. Investig Ophthalmol Vis Sci. Nov 1 2006;47(11):4725–4731. doi:10.1167/iovs.05-1078.
  • Radhakrishnan H, Allen PM, Charman WN. Dynamics of accommodative facility in myopes. Invest Ophthalmol Vis Sci. 2007;48(9):4375–4382. doi:10.1167/iovs.07-0269.
  • Allen PM, O’Leary DJ. Accommodation functions: co-dependency and relationship to refractive error. Vision Res. 2006 Feb;46(4):491–505. doi:10.1016/j.visres.2005.05.007.
  • Han X, Xu D, Ge W, Wang Z, Li X, Liu WA. Comparison of the effects of orthokeratology lens, medcall lens, and ordinary frame glasses on the accommodative response in myopic children. Eye Contact Lens. 2017.
  • The BP. Effect of orthokeratology on accommodative and convergence function: a clinic based pilot study. Optom Vis Performace. Jan 2013;1(5):162–167.
  • Karimian F, Baradaran-Rafii A, Bagheri A, et al. Accommodative changes after photorefractive keratectomy in myopic eyes. Optom Vis Sci. Nov 2010;87(11):833–838. doi:10.1097/OPX.0b013e3181f6fccc.
  • Felipe-Marquez G, Nombela-Palomo M, Cacho I, Nieto-Bona A. Accommodative changes produced in response to overnight orthokeratology. Graefe’s Arch Clin Exp Ophthalmol. 2015 Mar 21;253(4):619–626. doi:10.1007/s00417-014-2865-2.
  • Ozkan J, Fedtke C, Chung J, Thomas V, Chandra Bakaraju R. Short-term adaptation of accommodative responses in myopes fitted with multifocal contact lenses. Eye Contact Lens. 2018;44(Suppl 1):S30–7. doi:10.1097/ICL.0000000000000299.
  • Chen Y, Drobe B, Zhang C, et al. Accommodation is unrelated to myopia progression in Chinese myopic children. Sci Rep. Dec 1 2020;10(1):12056. doi:10.1038/s41598-020-68859-6.
  • Batres L, Peruzzo S, Serramito M, Carracedo G. Accommodation response and spherical aberration during orthokeratology. Graefe’s Arch Clin Exp Ophthalmol. 2020 Jan 1;258(1):117–127. doi:10.1007/s00417-019-04504-x.
  • Kang P, Watt K, Chau T, Zhu J, Evans BJW, Swarbrick H. The impact of orthokeratology lens wear on binocular vision and accommodation: a short-term prospective study. Contact Lens Anterior Eye. 2018 Dec 1;41(6):501–506. doi:10.1016/j.clae.2018.08.002.
  • Felipe-Marquez G, Nombela-Palomo M, Palomo-Álvarez C, Cacho I, Nieto-Bona A. Binocular function changes produced in response to overnight orthokeratology. Graefe’s Arch Clin Exp Ophthalmol. Jan 1, 2017;255(1):179–188.
  • Gifford K, Gifford P, Hendicott PL, Schmid KL. Near binocular visual function in young adult orthokeratology versus soft contact lens wearers. Contact Lens Anterior Eye. 2017 Jun 1;40(3):184–189. doi:10.1016/j.clae.2017.01.003.
  • Yang Y, Wang L, Li P, Li J. Accommodation function comparison following use of contact lens for orthokeratology and spectacle use in myopic children: a prospective controlled trial. Int J Ophthalmol. 2018;11:1234–1238.
  • Song Y, Zhu S, Yang B, et al. Accommodation and binocular vision changes after wearing orthokeratology lens in 8- to 14-year-old myopic children. Graefes Arch Clin Exp Ophthalmol. Feb 2, 2021.
  • Pereira-da-mota AF, Costa J, Amorim-de-sousa A, González-Méijome JM, The QA. Impact of overnight orthokeratology on accommodative response in myopic subjects. J Clin Med. 2020 Nov 17;9(11):3687. doi:10.3390/jcm9113687.
  • Ruiz-Alcocer J, Madrid-Costa D, Radhakrishnan H, Ferrer-Blasco T, Montés-Micó R. Changes in accommodation and ocular aberration with simultaneous vision multifocal contact lenses. Eye Contact Lens. 2012 Sep;38(5):288–294. doi:10.1097/ICL.0b013e3182654994.
  • Tarrant J, Severson H, Wildsoet CF. Accommodation in emmetropic and myopic young adults wearing bifocal soft contact lenses. Ophthalmic Physiol Opt. 2008;28(1):62–72. doi:10.1111/j.1475-1313.2007.00529.x.
  • Gong CR, Troilo D, Accommodation RK. Phoria in children wearing multifocal contact lenses. Optom Vis Sci. 2017;94(3):353–360. doi:10.1097/OPX.0000000000001044.
  • Kang P, Wildsoet CF. Acute and short-term changes in visual function with multifocal soft contact lens wear in young adults. Cont Lens Anterior Eye. 2016;39(2):133–140. doi:10.1016/j.clae.2015.09.004.
  • Madrid-Costa D, Ruiz-Alcocer J, García-Lázaro S, Ferrer-Blasco T, Montés-Micó R. Optical power distribution of refractive and aspheric multifocal contact lenses: effect of pupil size. Contact Lens Anterior Eye. 2015 Oct 1;38(5):317–321. doi:10.1016/j.clae.2015.03.008.
  • Altoaimi BH, Almutairi MS, Kollbaum PS, Bradley A. Accommodative behavior of young eyes wearing multifocal contact lenses. Optom Vis Sci. 2018 May;95(5):416–427. doi:10.1097/OPX.0000000000001214.
  • Altoaimi BH, Almutairi MS, Kollbaum P, Bradley A. Accommodative behavior of eyes wearing aspheric single vision contact lenses. Optom Vis Sci. 2017 Oct 1;94(10):971–980. doi:10.1097/OPX.0000000000001121.
  • Schilling T, Ohlendorf A, Varnas SR, Wahl S. Peripheral design of progressive addition lenses and the lag of accommodation in myopes. Investig Ophthalmol Vis Sci. 2017 Jul 1;58(9):3319–3324. doi:10.1167/iovs.17-21589.
  • Lam CSY, Tang WC, Tse DYY, et al. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. Mar 1 2020;104(3):363–368. doi:10.1136/bjophthalmol-2018-313739.
  • Bao J, Huang Y, Li X, et al. Myopia control with spectacle lenses with aspherical lenslets: a 2-year randomized clinical trial. In: ARVO 2021 Annual Meeting: Virtual Meeting Details. 2021.
  • Bao J, Yang A, Huang Y, et al. One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br J Ophthalmol. 2021; bjophthalmo l–2020–318367.
  • Loughman J, Flitcroft DI. The acceptability and visual impact of 0.01% atropine in a Caucasian population. Br J Ophthalmol. 2016;100:1525–1529. doi:10.1136/bjophthalmol-2015-307861.
  • Cooper J, Eisenberg N, Schulman E, et al. Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci. 2013;90(12):1467–1472. doi:10.1097/OPX.0000000000000037.
  • Chia A, Chua W-HW-H, Fong A, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% Doses (Atropine for the treatment of myopia 2). Ophthalmology. Feb 2012;119(2):347–354. doi:10.1016/j.ophtha.2011.07.031.
  • Yam J, Li F, Zhang X, et al. Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study: phase 2 report. Ophthalmology. Jul 1 2020;127(7):910–919. doi:10.1016/j.ophtha.2019.12.011.
  • Tan D, Tay SA, Loh K-L, et al. Topical atropine in the control of myopia. Asia-Pac J Ophthalmol. 2016;5(6):424–428. doi:10.1097/APO.0000000000000232.
  • Fu A, Stapleton F, Wei L, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression. Br J Ophthalmol. 2020;104(11):1535–1541.
  • Moon JS, Shin SY. The diluted atropine for inhibition of myopia progression in Korean children. Int J Ophthalmol. 2018;11:1657–1662.
  • Kaymak H, Fricke A, Mauritz Y, et al. Short-term effects of low-concentration atropine eye drops on pupil size and accommodation in young adult subjects. Graefes Arch Clin Exp Ophthalmol. 2018;256(11):2211–2217. doi:10.1007/s00417-018-4112-8.
  • Joachimsen L, Farassat N, Bleul T, Böhringer D, Lagrèze W, Reich M. Side effects of topical atropine 0.05% compared to 0.01% for myopia control in German school children: a pilot study. Int Ophthalmol. 2021 Jun 1;41(6):2001–2008. doi:10.1007/s10792-021-01755-8.
  • Wolffsohn JS, Flitcroft DI, Gifford KL, et al. IMI - Myopia control reports overview and introduction. Invest Ophthalmol Vis Sci. Feb 28 2019;60(3):M1–19. doi:10.1167/iovs.18-25980.
  • Zadnik K, Sinnott LT, Cotter SA, et al. Prediction of juvenile-onset myopia. JAMA Ophthalmol. Jun 1 2015;133(6):683–689. doi:10.1001/jamaophthalmol.2015.0471.
  • Prousali E, Dastiridou A, Ziakas N, Androudi S, Mataftsi A. Choroidal thickness and ocular growth in childhood. Surv Ophthalmol. 2021 Jul;66(2):261–275. doi:10.1016/j.survophthal.2020.06.008.
  • Jiménez R, González MD, Pérez MA, Garcia JA. Evolution of accommodative function and development of ocular movements in children. Ophthalmic Physiol Opt. 2003 Mar;23(2):97–107. doi:10.1046/j.1475-1313.2003.00093.x.
  • Charman WN, Radhakrishnan H. Accommodation, pupil diameter and myopia. Ophthalmic Physiol Opt. 2009 Jan;29(1):72–79. doi:10.1111/j.1475-1313.2008.00611.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.