113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Automatic Segment and Quantify Choroid Layer in Myopic eyes: Deep Learning based Model

, , , , , & show all
Pages 611-618 | Received 21 Dec 2021, Accepted 14 Jan 2022, Published online: 09 Feb 2022

REFERENCES

  • Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–168. doi:10.1016/j.preteyeres.2009.12.002.
  • Cheung CMG, Arnold JJ, Holz FG, et al. Myopic choroidal neovascularization: review, guidance, and consensus statement on management. Ophthalmology. 2017;124(11):1690–1711. doi:10.1016/j.ophtha.2017.04.028.
  • Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management. Ophthalmology. 2018;125(5):708–724. doi:10.1016/j.ophtha.2017.11.019.
  • Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–1159. doi:10.1016/S0140-6736(18)31550-2.
  • Semeraro F, Morescalchi F, Russo A, et al. Central serous chorioretinopathy: pathogenesis and management. Clin Ophthalmol. 2019;13:2341–2352. doi:10.2147/OPTH.S220845.
  • Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500. doi:10.1016/j.ajo.2008.05.032.
  • Heirani M, Shandiz JH, Shojaei A, Choroidal Thickness N-NF. Profile in normal Iranian eyes with different refractive status by spectral-domain optical coherence tomography. J Curr Ophthalmol. 2020;32(1):58–68. doi:10.1016/j.joco.2019.08.005.
  • Tuncer I, Karahan E, Zengin MO, Atalay E, Polat N. Choroidal thickness in relation to sex, age, refractive error, and axial length in healthy Turkish subjects. Int Ophthalmol. 2015;35(3):403–410. doi:10.1007/s10792-014-9962-4.
  • Tian J, Marziliano P, Baskaran M, Tun TA, Aung T. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images. Biomed Opt Express. 2013;4(3):397–411. doi:10.1364/BOE.4.000397.
  • Vupparaboina KK, Nizampatnam S, Chhablani J, Richhariya A, Jana S. Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section. Comput Med Imaging Graph: Off J Comput Med Imaging Soc. 2015;46(Pt 3):315–327. doi:10.1016/j.compmedimag.2015.09.008.
  • Zhang L, Buitendijk GH, Lee K, et al. Validity of automated choroidal segmentation in SS-OCT and SD-OCT. Invest Ophthalmol Vis Sci. 2015;56(5):3202–3211. doi:10.1167/iovs.14-15669.
  • Chen Q, Fan W, Niu S, Shi J, Shen H, Yuan S. Automated choroid segmentation based on gradual intensity distance in HD-OCT images. Opt Express. 2015;23(7):8974–8994. doi:10.1364/OE.23.008974.
  • Chiao JY, Chen KY, Liao KY, Hsieh PH, Zhang G, Huang TC. Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine (Baltimore). 2019;98(19):e15200. doi:10.1097/MD.0000000000015200.
  • Sompawong N, Mopan J, and Pooprasert P, et al. Automated pap smear cervical cancer screening using deep learning. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2019;2019:7044–7048. doi:10.1109/EMBC.2019.8856369.
  • Zhang R, Cheng C, Zhao X, Li X. Multiscale Mask R-CNN-based lung tumor detection using PET imaging. Mol Imaging. 2019;18:1536012119863531. doi:10.1177/1536012119863531.
  • Gao J, Guo Y, Sun Y, Qu G. Application of deep learning for early screening of colorectal precancerous lesions under white light endoscopy. Comput Math Methods Med. 2020;2020:8374317. doi:10.1155/2020/8374317.
  • Moutselos K, Berdouses E, Oulis C, and Maglogiannis I. Recognizing occlusal caries in dental intraoral images using deep learning. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2019;2019:1617–1620. doi:10.1109/EMBC.2019.8856553.
  • Maloca PM, Lee AY, de Carvalho ER, et al. Validation of automated artificial intelligence segmentation of optical coherence tomography images. PloS one. 2019;14(8):e0220063. doi:10.1371/journal.pone.0220063.
  • Li YH, Sheu WH, Chou CC, et al. The clinical influence after implementation of convolutional neural network-based software for diabetic retinopathy detection in the primary care setting. Life (Basel). 2021;11:3.
  • Ren S, He K, Girshick R, Faster R-CNN: SJ. Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137–1149. doi:10.1109/TPAMI.2016.2577031.
  • Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):640–651. doi:10.1109/TPAMI.2016.2572683.
  • He K, Gkioxari G, Dollár P, and Girshick R. Mask r-CNN Paper presented at: Proceedings of the IEEE international conference on computer vision. doi:10.1109/ICCV.2017.322. 2017.
  • Hsia WP, Tse SL, Chang CJ, Huang YL. Automatic segmentation of choroid layer using deep learning on spectral domain optical coherence tomography. Appl Sci. 2021;11(12):5488. doi:10.3390/app11125488.
  • He K, Zhang X, Ren S, and Sun J. Deep residual learning for image recognition. Paper presented at: Proceedings of the IEEE conference on computer vision and pattern recognition, doi:10.1109/CVPR.2016.90. 2016.
  • Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, and Belongie S. Feature pyramid networks for object detection. Paper presented at: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. doi:10.1109/CVPR.2017.106.
  • Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci. 2010;51(4):2173–2176. doi:10.1167/iovs.09-4383.
  • Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing eye study. Ophthalmology. 2013;120(1):175–180. doi:10.1016/j.ophtha.2012.07.048.
  • Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese subjects. Invest Ophthalmol Vis Sci. 2011;52(13):9555–9560. doi:10.1167/iovs.11-8076.
  • Rasheed MA, Singh SR, Invernizzi A, et al. Wide-field choroidal thickness profile in healthy eyes. Sci Rep. 2018;8(1):17166. doi:10.1038/s41598-018-35640-9.
  • Krantz EM, Cruickshanks KJ, Klein BE, Klein R, Huang GH, Nieto FJ. Measuring refraction in adults in epidemiological studies. Arch Ophthalmol. 2010;128(1):88–92. doi:10.1001/archophthalmol.2009.349.
  • Moraru AD, Costin D, Moraru RL, Branisteanu DC. Artificial intelligence and deep learning in ophthalmology - present and future (Review). Exp Ther Med. 2020;20(4):3469–3473. doi:10.3892/etm.2020.9118.
  • Masood S, Fang R, Li P, et al. Automatic choroid layer segmentation from optical coherence tomography images using deep learning. Sci Rep. 2019;9(1):3058. doi:10.1038/s41598-019-39795-x.
  • Zhang H, Yang J, Zhou K, et al. Automatic segmentation and visualization of choroid in OCT with knowledge infused deep learning. IEEE J Biomed Health Inform. 2020;24(12):3408–3420. doi:10.1109/JBHI.2020.3023144.
  • Zheng G, Jiang Y, and Shi C, et al. Deep learning algorithms to segment and quantify the choroidal thickness and vasculature in swept-source optical coherence tomography images. J Innov Opt Health Sci. 2021;14(01) :2140002. doi:10.1142/S1793545821400022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.