7,479
Views
2
CrossRef citations to date
0
Altmetric
Review

Visualisation of peripheral retinal degenerations and anomalies with ocular imaging

, ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 554-582 | Received 29 Nov 2021, Accepted 18 Dec 2021, Published online: 07 Mar 2022

References

  • Flaxel CJ, Adelman RA, Bailey ST, et al. Posterior Vitreous Detachment, Retinal Breaks, and Lattice Degeneration Preferred Practice Pattern(R). Ophthalmology. 2020;127:146–181. doi:10.1016/j.ophtha.2019.09.027.
  • Choi J, Moon JW, Shin HJ. Chronic kidney disease, early age-related macular degeneration, and peripheral retinal drusen. Ophthalmic Epidemiol. 2011;18:259–263. doi:10.3109/09286586.2011.602509.
  • Csincsik L, MacGillivray TJ, Flynn E, et al. Peripheral Retinal Imaging Biomarkers for Alzheimer’s Disease: a Pilot Study. Ophthalmic Res. 2018;59:182–192. doi:10.1159/000487053.
  • Droz I, Mantel I, Ambresin A, et al. Genotype-phenotype correlation of age-related macular degeneration: influence of complement factor H polymorphism. Br J Ophthalmol. 2008;92:513–517. doi:10.1136/bjo.2007.127811.
  • Nivison-Smith L, Milston R, Chiang J, et al. Peripheral retinal findings in populations with macular disease are similar to healthy eyes. Ophthalmic Physiol Opt. 2018;38:584–595. doi:10.1111/opo.12589.
  • Ritchie CW, Peto T, Barzegar-Befroei N, et al. Peripheral Retinal Drusen as a Potential Surrogate Marker for Alzheimer’s Dementia: a Pilot Study Using Ultra-Wide Angle Imaging. Invest Ophthalmol Vis Sci. 2011;52:6683.
  • Seddon JM, Cote J, Page WF, et al. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol. 2005;123:321–327. doi:10.1001/archopht.123.3.321.
  • Seddon JM, Reynolds R, Rosner B. Peripheral retinal drusen and reticular pigment: association with CFHY402H and CFHrs1410996 genotypes in family and twin studies. Invest Ophthalmol Vis Sci. 2009;50:586–591. doi:10.1167/iovs.08-2514.
  • Guymer R, Wu Z. Age-related macular degeneration (AMD): more than meets the eye. The role of multimodal imaging in today’s management of AMD-A review. Clin Exp Ophthalmol. 2020;48:983–995. doi:10.1111/ceo.13837.
  • Ly A, Nivison-Smith L, Hennessy M, Kalloniatis M. The advantages of intermediate-tier, inter-optometric referral of low risk pigmented lesions. Ophthalmic Physiol Opt. 2017;37:661–668. doi:10.1111/opo.12413.
  • Ly A, Nivison-Smith L, Hennessy MP, Kalloniatis M. Collaborative care of non-urgent macular disease: a study of inter-optometric referrals. Ophthalmic Physiol Opt. 2016;36:632–642. doi:10.1111/opo.12322.
  • Lens A, Nemeth SC, Ledford JK. Ocular Anatomy and Physiology. Thorofare, NJ, SLACK Incorporated: 2008.
  • Bastek JV, Siegel EB, Straatsma BR, Foos RY. Chorioretinal juncture. Pigmentary patterns of the peripheral fundus. Ophthalmology. 1982;89:1455–1463. doi:10.1016/S0161-6420(82)34617-5.
  • Lewis H, Straatsma BR, Foos RY, Lightfoot DO. Reticular degeneration of the pigment epithelium. Ophthalmology. 1985;92:1485–1495. doi:10.1016/S0161-6420(85)33829-0.
  • Choi W, Mohler KJ, Potsaid B, et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One. 2013;8:e81499. doi:10.1371/journal.pone.0081499.
  • Tan CS, Heussen F, Sadda SR. Peripheral autofluorescence and clinical findings in neovascular and non-neovascular age-related macular degeneration. Ophthalmology. 2013;120:1271–1277. doi:10.1016/j.ophtha.2012.12.002.
  • Lengyel I, Csutak A, Florea D, et al. A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina. Ophthalmology. 2015;122:1340–1347. doi:10.1016/j.ophtha.2015.03.005.
  • Domalpally A, Clemons TE. Writing Committee for the OPRs. Peripheral Retinal Changes Associated with Age-Related Macular Degeneration in the Age-Related Eye Disease Study 2: age-Related Eye Disease Study 2 Report Number 12 by the Age-Related Eye Disease Study 2 Optos PEripheral RetinA (OPERA) Study Research Group. Ophthalmology. 2017;124:479–487. doi:10.1016/j.ophtha.2016.12.004.
  • American Academy of Ophthalmology: Comprehensive Adult Medical Eye Evaluation Preferred Practice Pattern. American Academy of Ophthalmology Preferred Practice Patterns Committee, Hoskins Center for Quality Eye Care; 2020.
  • Quinn N, Csincsik L, Flynn E, et al. The clinical relevance of visualising the peripheral retina. Prog Retin Eye Res. 2019;68:83–109. doi:10.1016/j.preteyeres.2018.10.001.
  • Nagiel A, Lalane RA, Sadda SR, Schwartz SD. ULTRA-WIDEFIELD FUNDUS IMAGING: a Review of Clinical Applications and Future Trends. Retina. 2016;36:660–678. doi:10.1097/IAE.0000000000000937.
  • Brown K, Sewell JM, Trempe C, et al. Comparison of image-assisted versus traditional fundus examination. Eye Brain. 2013;5:1–8. doi:10.2147/EB.S37646.
  • Croft DE, van Hemert J, Wykoff CC, et al. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2014;45:312–317. doi:10.3928/23258160-20140709-07.
  • Sagong M, van Hemert J, Olmos de Koo LC, et al. Assessment of accuracy and precision of quantification of ultra-widefield images. Ophthalmology. 2015;122:864–866. doi:10.1016/j.ophtha.2014.11.016.
  • McNabb RP, Grewal DS, Mehta R, et al. Wide field of view swept-source optical coherence tomography for peripheral retinal disease. Br J Ophthalmol. 2016;100:1377–1382. doi:10.1136/bjophthalmol-2015-307480.
  • Kolb JP, Klein T, Kufner CL, et al. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle. Biomed Opt Express. 2015;6:1534–1552. doi:10.1364/BOE.6.001534.
  • Reznicek L, Klein T, Wieser W, et al. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices. Graefes Arch Clin Exp Ophthalmol. 2014;252:1009–1016. doi:10.1007/s00417-014-2640-4.
  • Carrai P, Pichi F, Bonsignore F, et al. Wide-field spectral domain-optical coherence tomography in central serous chorioretinopathy. Int Ophthalmol. 2015;35:167–171. doi:10.1007/s10792-014-0034-6.
  • Choudhry N, Golding J, Manry MW, Rao RC. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery. Ophthalmology. 2016;123:1368–1374. doi:10.1016/j.ophtha.2016.01.045.
  • Pichi F, Smith SD, Abboud EB, et al. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2020;258:1901–1909. doi:10.1007/s00417-020-04773-x.
  • Straatsma BR, Landers MB, Kreiger AE. The ora serrata in the adult human eye. Arch Ophthalmol. 1968;80:3–20. doi:10.1001/archopht.1968.00980050005002.
  • Shukla M, OP A. Developmental variations of peripheral retina. Indian J Ophthalmol. 1980;28:189–193.
  • Campagnoli TR, Smiddy WE. Peripheral Retinal Abnormalities. In: Medina CA, Townsend JH, Singh AD, eds. Manual of Retinal Diseases: A Guide to Diagnosis and Management. Miami: Springer International Publishing Switzerland; 2016: 243-247
  • Spencer LM, Foos RY, Straatsma BR. Enclosed Bays of the Ora Serrata: relationship to Retina Tears. Arch Ophthalmol. 1970;83:421–425. doi:10.1001/archopht.1970.00990030421006.
  • Lonn LI, Smith TR. Ora Serrata Pearls: clinical and Histological Correlation. Arch Ophthalmol. 1967;77:809–813. doi:10.1001/archopht.1967.00980020811020.
  • Adams ST. Pars Plana Cysts. A.M.A. Arch Ophthalmol. 1957;58:328–330. doi:10.1001/archopht.1957.00940010340002.
  • Jones WL, Reidy RW. Atlas of the Peripheral Ocular Fundus. Boston, Butterworth-Heinemann Medical; 1985.
  • Mannino G, Malagola R, Abdolrahimzadeh S, et al. Ultrasound biomicroscopy of the peripheral retina and the ciliary body in degenerative retinoschisis associated with pars plana cysts. Br J Ophthalmol. 2001;85:976–982. doi:10.1136/bjo.85.8.976.
  • Allen RA, Miller DH, Straatsma BR. Cysts of the posterior ciliary body (pars plana). Arch Ophthalmol. 1961;66:302–313. doi:10.1001/archopht.1961.00960010304003.
  • Schepens CL. Clinical aspects of pathologic changes in the vitreous body. Am J Ophthalmol. 1954;38:8–21. doi:10.1016/0002-9394(54)90004-5.
  • Rutnin U, Schepens CL. Fundus appearance in normal eyes. II. The standard peripheral fundus and developmental variations. Am J Ophthalmol. 1967;64:840–852. doi:10.1016/0002-9394(67)93056-5.
  • Demaine ED, Demaine ML, Iacono J, Langerman S. Wrapping spheres with flat paper. Comput Geom. 2009;42:748–757. doi:10.1016/j.comgeo.2008.10.006.
  • Rutnin U, Schepens CL. Fundus appearance in normal eyes. 3. Peripheral degenerations. Am J Ophthalmol. 1967;64:1040–1062.
  • O’Malley PF, Allen RA. Peripheral cystoid degeneration of the retina. Incidence and distribution in 1,000 autopsy eyes. Arch Ophthalmol. 1967;77:769–776. doi:10.1001/archopht.1967.00980020771010.
  • Tolentino FI, Lapus JV, Novalis G, et al. Fluorescein angiography of degenerative lesions of the peripheral fundus and rhegmatogenous retinal detachment. Int Ophthalmol Clin. 1976;16:13–29. doi:10.1097/00004397-197601610-00005.
  • Foos RY, Feman SS. Reticular cystoid degeneration of the peripheral retina. Am J Ophthalmol. 1970;69:392–403. doi:10.1016/0002-9394(70)92272-5.
  • Streeten BW. Development of the human retinal pigment epithelium and the posterior segment. Arch Ophthalmol. 1969;81:383–394. doi:10.1001/archopht.1969.00990010385017.
  • Teng CC, Katzin HM. An anatomic study of the peripheral retina. II. Peripheral cystoid degeneration of the retina; formation of cysts and holes. Am J Ophthalmol. 1953;36:29–39. doi:10.1016/0002-9394(53)91505-0.
  • Straatsma BR. Clinical features of degenerative retinoschisis. Aust J Ophthalmol. 1980;8:201–206. doi:10.1111/j.1442-9071.1980.tb00339.x.
  • O’Malley P, Allen RA, Straatsma BR. O’Malley CC: paving-Stone Degeneration of the Retina. Arch Ophthalmol. 1965;73:169–182. doi:10.1001/archopht.1965.00970030171006.
  • Corbelli E, Borrelli E, Parravano M, et al. Multimodal imaging characterization of peripheral drusen. Graefes Arch Clin Exp Ophthalmol. 2020;258:543–549. doi:10.1007/s00417-019-04586-7.
  • Suetsugu T, Kato A, Yoshida M, et al. Evaluation of peripheral fundus autofluorescence in eyes with wet age-related macular degeneration. Clin Ophthalmol. 2016;10:2497–2503. doi:10.2147/OPTH.S120402.
  • Witmer MT, Kozbial A, Daniel S, Kiss S. Peripheral autofluorescence findings in age-related macular degeneration. Acta Ophthalmol. 2012;90:e428–433. doi:10.1111/j.1755-3768.2012.02434.x.
  • Quinn N, Wright D, Peto T, et al. Prevalence and characteristics of peripheral retinal lesions in an ageing population. Invest Ophthalmol Vis Sci. 2017;58:1497.
  • Lengyel I, Tufail A, Hosaini HA, et al. Association of drusen deposition with choroidal intercapillary pillars in the aging human eye. Invest Ophthalmol Vis Sci. 2004;45:2886–2892. doi:10.1167/iovs.03-1083.
  • Rudolf M, Clark ME, Chimento MF, et al. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest Ophthalmol Vis Sci. 2008;49:1200–1209. doi:10.1167/iovs.07-1466.
  • Postel EA, Agarwal A, Schmidt S, et al. Comparing age-related macular degeneration phenotype in probands from singleton and multiplex families. Am J Ophthalmol. 2005;139:820–825. doi:10.1016/j.ajo.2004.12.029.
  • Bae K, Cho K, Kang SW, et al. Peripheral Reticular Pigmentary Degeneration and Choroidal Vascular Insufficiency, Studied by Ultra Wide-Field Fluorescein Angiography. PLoS One. 2017;12:e0170526. doi:10.1371/journal.pone.0170526.
  • Straatsma BR, Lewis H, Foos RY, Evans R. Fluorescein angiography in reticular degeneration of the pigment epithelium. American Journal of Ophthalmology. 1985;100:202–208. doi:10.1016/s0002-9394(14)75007-x.
  • Humphrey WT, Carlson RE, Valone JA Jr. Senile reticular pigmentary degeneration. Am J Ophthalmol. 1984;98:717–722. doi:10.1016/0002-9394(84)90686-X.
  • Friberg VJ, Derk BA, Friberg TR, et al. The Croatian Opera Study II: further study of the peripheral retinal features in AMD subjects and controls. Investigative Ophthalmology & Visual Science ARVO Annual Meeting Abstract 56, Denver, Colorado, 2015.
  • Seo T, Iwabuchi K, Kato M, Watanabe I. Reticular degeneration of retinal pigment epithelium. Nippon Ganka Gakkai Zasshi. 1992;96:1161–1166.
  • Feke GT, Tagawa H, Deupree DM, et al. Blood flow in the normal human retina. Invest Ophthalmol Vis Sci. 1989;30:58–65.
  • Takahashi K, Muraoka K, Kishi S, Shimizu K. Watershed zone in the human peripheral choroid. Ophthalmology. 1996;103:336–342. doi:10.1016/S0161-6420(96)30695-7.
  • Lains I, Park DH, Mukai R, et al. Peripheral Changes Associated With Delayed Dark Adaptation in Age-related Macular Degeneration. Am J Ophthalmol. 2018;190:113–124. doi:10.1016/j.ajo.2018.03.035.
  • Hunter JE. Retinal white without pressure: review and relative incidence. Am J Optom Physiol Opt. 1982;59:293–296.
  • Karlin DB, Curtin BJ. Peripheral chorioretinal lesions and axial length of the myopic eye. Am J Ophthalmol. 1976;81:625–635. doi:10.1016/0002-9394(76)90129-X.
  • Nagpal KC, Huamonte F, Constantaras A, et al. Migratory white-without-pressure retinal lesions. Arch Ophthalmol. 1976;94:576–579. doi:10.1001/archopht.1976.03910030270003.
  • Orlin A, Fatoo A, Ehrlich J, et al. Ultra-widefield fluorescein angiography of white without pressure. Clin Ophthalmol. 2013;7:959–964. doi:10.2147/OPTH.S43450.
  • Fawzi AA, Nielsen JS, Mateo-Montoya A, et al. Multimodal imaging of white and dark without pressure fundus lesions. Retina. 2014;34:2376–2387. doi:10.1097/IAE.0000000000000388.
  • Diaz RI, Sigler EJ, Randolph JC, et al. Spectral domain optical coherence tomography characteristics of white-without-pressure. Retina. 2014;34:1020–1021. doi:10.1097/IAE.0000000000000012.
  • Shukla M, Ahuja OP. White with pressure (WWP) and white without pressure (WWOP) lesions. Indian J Ophthalmol. 1982;30:129–132.
  • Akbani MI, Reddy KRK, Vishwanath K, Saleem M. Prevalence of Peripheral Retinal Degenerations in the Cases of Myopia- A Prospective Study. Indian J Public Health ResDev. 2014;5:58/63. doi:10.5958/j.0976-5506.5.2.074.
  • Eisner G. Biomicroscopy of the Peripheral Fundus: An Atlas and Textbook. Berlin, New York: Springer; 1973.
  • Daicker B. Are the symptoms “white with pressure” and “white without pressure” related to peripheral retinal sclerosis? Mod Probl Ophthalmol. 1975;15:82–90.
  • Tassman W, Annesley W Jr. Retinal detachment in the retinopathy of prematurity. Arch Ophthalmol. 1966;75:608–614. doi:10.1001/archopht.1966.00970050610005.
  • Brockhurst RJ, Albert DM, Zakov ZN. Pathologic findings in familial exudative vitreoretinopathy. Arch Ophthalmol. 1981;99:2143–2146. doi:10.1001/archopht.1981.03930021019006.
  • Pemberton JW, Freeman HM, Schepens CL. Familial retinal detachment and the Ehlers-Danlos syndrome. Arch Ophthalmol. 1966;76:817–824. doi:10.1001/archopht.1966.03850010819007.
  • Gilmour DF. Familial exudative vitreoretinopathy and related retinopathies. Eye (Lond). 2015;29:1–14. doi:10.1038/eye.2014.70.
  • Gozum N, Cakir M, Gucukoglu A, Sezen F. Relationship between retinal lesions and axial length, age and sex in high myopia. Eur J Ophthalmol. 1997;7:277–282. doi:10.1177/112067219700700313.
  • Talbot JF, Bird AC, Maude GH, et al. Sickle cell retinopathy in Jamaican children: further observations from a cohort study. Br J Ophthalmol. 1988;72:727–732. doi:10.1136/bjo.72.10.727.
  • Chang MY, McBeath JB, McCannel CA, McCannel TA. ‘Shadow sign’ in congenital hypertrophy of the retinal pigment epithelium of young myopic pigmented patients. Eye (Lond). 2016;30:160–163. doi:10.1038/eye.2015.187.
  • Nagpal KC, Goldberg MF, Asdourian G, et al. Dark-without-pressure fundus lesions. Br J Ophthalmol. 1975;59:476–479. doi:10.1136/bjo.59.9.476.
  • Moysidis SN, Koulisis N, Ameri H, et al. Multimodal Imaging of Geographic Areas of Retinal Darkening. Retin Cases Brief Rep. 2015;9:347–351. doi:10.1097/ICB.0000000000000231.
  • Sherman T, Palileo BM, Adam CR, Abrams GW. Dark Without Pressure In A Case Of Choroidal Osteoma. Retin Cases Brief Rep. 2020. doi:10.1097/ICB.0000000000001026.
  • Flores Pimentel MA, Duncan JL, de Alba Campomanes AG, Moore A. Dark without pressure retinal changes in a paediatric age group. Eye (Lond). 2020; 35: 1221-1227. doi: 10.1038/s41433-020-1088-5.
  • Chen X, Liang M. Changes in Dark without Pressure. Ophthalmol Retina. 2018;2:1077. doi:10.1016/j.oret.2018.07.010.
  • Byer NE. Clinical study of lattice degeneration of the retina. Trans Am Acad Ophthalmol Otolaryngol. 1965;69:1065–1081.
  • Straatsma BR, Zeegen PD, Foos RY, et al. Lattice degeneration of the retina. XXX Edward Jackson Memorial Lecture. Am J Ophthalmol. 1974;77:619–649. doi:10.1016/0002-9394(74)90525-X.
  • Kothari A, Narendran V, Saravanan VR. In vivo sectional imaging of the retinal periphery using conventional optical coherence tomography systems. Indian J Ophthalmol. 2012;60:235–239. doi:10.4103/0301-4738.95885.
  • Manjunath V, Taha M, Fujimoto JG, Duker JS. Posterior lattice degeneration characterized by spectral domain optical coherence tomography. Retina. 2011;31:492–496. doi:10.1097/IAE.0b013e3181ed8dc9.
  • Byer NE. Rethinking Prophylactic Therapy of Retinal Detachment. New York: Ophthalmic Communications Society; 1992.
  • Lang GK. Daumann FJ: [Peripheral fundus changes in subjects with healthy eyes (pilots)]. Klin Monbl Augenheilkd. 1982;181:493–495. doi:10.1055/s-2008-1055279.
  • Mitry D, Charteris DG, Fleck BW, et al. The epidemiology of rhegmatogenous retinal detachment: geographical variation and clinical associations. Br J Ophthalmol. 2010;94:678–684. doi:10.1136/bjo.2009.157727.
  • Semes LP, Holland WC, Likens EG. Prevalence and laterality of lattice retinal degeneration within a primary eye care population. Optometry. 2001;72:247–250.
  • Shiomi Y. Study of lattice degeneration of the retina. Part I. Clinical features of lattice degeneration of the retina without retinal detachment (author’s transl). Nippon Ganka Gakkai Zasshi. 1980;84:2036–2042.
  • Shiomi Y. Study of lattice degeneration of the retina. Part 2. Clinical features of lattice degeneration of the retina (author’s transl). Nippon Ganka Gakkai Zasshi. 1981;85:269–275.
  • Zhang T, Zuo Y, Wei Y, et al. The Prevalence and Associations of Peripheral Retinopathy: baseline Study of Guangzhou Office Computer Workers. J Ophthalmol. 2018:2358690. doi:10.1155/2018/2358690.
  • Sato K, Tsunakawa N, Inaba K, Yanagisawa Y. Fluorescein angiography on retinal detachment and lattice degeneration. I. Equatorial degeneration with idiopathic retinal detachment. Nippon Ganka Gakkai Zasshi. 1971;75:635–642.
  • Meguro A, Ideta H, Ideta R, et al. In-depth analysis of the COL2A1 gene in lattice degeneration of the retina. Invest Ophthalmol Vis Sci. 2014;55:6435.
  • Okazaki S, Meguro A, Ideta R, et al. Common variants in the COL2A1 gene are associated with lattice degeneration of the retina in a Japanese population. Mol Vis. 2019;25:843–850.
  • Yamane T, Meguro A, and Takeuchi M, et al. Association study of RHBDD1-COL4A4 gene polymorphisms with susceptibility to lattice degeneration of the retina in a Japanese population. Investigative Ophthalmology & Visual Science . 2015;56: 1095-1095.
  • Tsukahara I. A study of lattice degeneration of the retina with slit-lamp microscope. Nippon Ganka Gakkai Zasshi. 1967;71:247–250.
  • Tillery WV, Lucier AC. Round atrophic holes in lattice degeneration–an important cause of phakic retinal detachment. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976;81:509–518.
  • Byer NE. Long-term natural history of lattice degeneration of the retina. Ophthalmology. 1989;96:1396–1401. doi:10.1016/S0161-6420(89)32713-8. discussion 1401-1392.
  • Byer NE. Changes in and prognosis of lattice degeneration of the retina. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:114–125.
  • Foos RY, Simons KB. Vitreous in lattice degeneration of retina. Ophthalmology. 1984;91:452–457. doi:10.1016/S0161-6420(84)34266-X.
  • Folk JC, Arrindell EL, Klugman MR. The fellow eye of patients with phakic lattice retinal detachment. Ophthalmology. 1989;96:72–79. doi:10.1016/S0161-6420(89)32926-5.
  • Ho T-C, Ho A. Long-term natural course of lattice degeneration of the retina in high myopic eyes - A ten-year long term study. Invest Ophthalmol Vis Sci. 2015;56:2965.
  • Hyams SW, Neumann E. Peripheral retina in myopia. With particular reference to retinal breaks. Br J Ophthalmol. 1969;53:300–306. doi:10.1136/bjo.53.5.300.
  • Friedman Z, Neumann E, Hyams S. Vitreous and peripheral retina in aphakia. A study of 200 non-myopic aphakic eyes. Br J Ophthalmol. 1973;57:52–57. doi:10.1136/bjo.57.1.52.
  • Hyams SW, Neumann E, Friedman Z:, Myopia-aphakia II. Vitreous and peripheral retina. Br J Ophthalmol. 1975;59:483–485. doi:10.1136/bjo.59.9.483.
  • Kottow M. Peripheral retinal degenerations and breaks. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1980;214:53–60. doi:10.1007/BF00414537.
  • Aaberg TM, Stevens TR. Snail track degeneration of the retina. Am J Ophthalmol. 1972;73:370–376. doi:10.1016/0002-9394(72)90065-7.
  • Shukla M, Ahuja OP. A possible relationship between lattice and snail track degenerations of the retina. Am J Ophthalmol. 1981;92:482–485. doi:10.1016/0002-9394(81)90639-5.
  • Bec P, Malecaze F, Arne JL, Mathis A. Lattice degeneration of the peripheral retina: ultrastructural study. Ophthalmologica. 1985;191:107–113. doi:10.1159/000309568.
  • Hyams SW, Meir E, Ivry M, et al. Chorioretinal Lesions Predisposing to Retinal Detachment. Am J Ophthalmol. 1974;78:429–437. doi:10.1016/0002-9394(74)90230-X.
  • Robertson DM, Link TP, Rostvold JA. Snowflake degeneration of the retina. Ophthalmology. 1982;89:1513–1517. doi:10.1016/S0161-6420(82)34609-6.
  • Straatsma BR, Foss RY. Typical and Reticular Degenerative Retinoschisis: XXVI Francis I. Proctor Memorial Lecture. Am JOphthalmol. 1973;75:551–575. doi:10.1016/0002-9394(73)90809-X.
  • Byer NE. Long-term natural history study of senile retinoschisis with implications for management. Ophthalmology. 1986;93:1127–1137. doi:10.1016/S0161-6420(86)33601-7.
  • Byer NE. Clinical Study of Senile Retinoschisis. Arch Ophthalmol. 1968;79:36–44. doi:10.1001/archopht.1968.03850040038012.
  • Regillo CD, Custis PH. Surgical management of retinoschisis. Curr Opin Ophthalmol. 1997;8:80–86. doi:10.1097/00055735-199706000-00014.
  • Xue K, Muqit MMK, Ezra E, et al. Incidence, mechanism and outcomes of schisis retinal detachments revealed through a prospective population-based study. Br J Ophthalmol. 2017;101:1022–1026. doi:10.1136/bjophthalmol-2016-309750.
  • Yeoh J, Rahman W, Chen FK, da Cruz L. Use of spectral-domain optical coherence tomography to differentiate acquired retinoschisis from retinal detachment in difficult cases. Retina. 2012;32:1574–1580. doi:10.1097/IAE.0b013e3182411d90.
  • Gottinger W. Retinoschisis und Ablatio. Klin Mbl Augenheilkd. 1976;169:14–21.
  • Yassur Y, Feldberg R, Axer-Siegel R, et al. Argon laser treatment of senile retinoschisis. Br J Ophthalmol. 1983;67:381–384. doi:10.1136/bjo.67.6.381.
  • Foos RY. Senile retinoschisis. Relationship to cystoid degeneration. Trans Am Acad Ophthalmol Otolaryngol. 1970;74:33–51.
  • Rachitskaya AV, Yuan A, Singh RP, et al. Optical coherence tomography of outer retinal holes in senile retinoschisis and schisis-detachment. Br J Ophthalmol. 2017;101:445–448. doi:10.1136/bjophthalmol-2016-308551.
  • Mitry D, Singh J, Yorston D, et al. The predisposing pathology and clinical characteristics in the Scottish retinal detachment study. Ophthalmology. 2011;118:1429–1434. doi:10.1016/j.ophtha.2010.11.031.
  • Byer NE. Spontaneous Regression of Senile Retinoschisis. Arch Ophthalmol. 1972;88:207–209. doi:10.1001/archopht.1972.01000030209016.
  • Clare G, Sullivan P, Gregor Z. Spontaneous regression of degenerative retinoschisis associated with outer leaf retinal breaks. Retina. 2005;25:1116–1117. doi:10.1097/00006982-200512000-00029.
  • Watzke RC, Folk JC, Lauer AK. Foveal involvement by acquired retinoschisis: long-term visual outcomes. Retina. 2013;33:606–612. doi:10.1097/IAE.0b013e3182695a6f.
  • Foos R. Retinal Holes. Am J Ophthalmol. 1978;86:354–358. doi:10.1016/0002-9394(78)90239-8.
  • Kuhn F, Aylward B. Rhegmatogenous retinal detachment: a reappraisal of its pathophysiology and treatment. Ophthalmic Res. 2014;51:15–31. doi:10.1159/000355077.
  • Neumann E, Hyams S. Conservative management of retinal breaks. A follow-up study of subsequent retinal detachment. Br J Ophthalmol. 1972;56:482–486. doi:10.1136/bjo.56.6.482.
  • Casswell EJ, Abou Ltaif S, Carr T, et al. Widefield Spectral-Domain Optical Coherence Tomography Imaging of Peripheral Round Retinal Holes with or without Retinal Detachment. Retina. 2019;39:1047–1053. doi:10.1097/IAE.0000000000002133.
  • Wilkinson CP. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment. Cochrane Database Syst Rev. 2014. doi:10.1002/14651858.CD003170.pub4:CD003170.
  • Byer NE. What happens to untreated asymptomatic retinal breaks, and are they affected by posterior vitreous detachment? Ophthalmology. 1998;105:1045–1049. doi:10.1016/S0161-6420(98)96006-7. discussion 1049-1050.
  • Davis MD. Natural history of retinal breaks without detachment. Arch Ophthalmol. 1974;92:183–194. doi:10.1001/archopht.1974.01010010191001.
  • Murakami-Nagasako F, Ohba N. Phakic retinal detachment associated with atrophic hole of lattice degeneration of the retina. Graefes Arch Clin Exp Ophthalmol. 1983;220:175–178. doi:10.1007/BF02186664.
  • Chou SC, Yang CH, Lee CH, et al. Characteristics of primary rhegmatogenous retinal detachment in Taiwan. Eye (Lond). 2007;21:1056–1061. doi:10.1038/sj.eye.6702397.
  • Laatikainen L, Tolppanen EM. Characteristics of rhegmatogenous retinal detachment. Acta Ophthalmol (Copenh). 1985;63:146–154. doi:10.1111/j.1755-3768.1985.tb01527.x.
  • Byer NE. Cystic retinal tufts and their relationship to retinal detachment. Arch Ophthalmol. 1981;99:1788–1790. doi:10.1001/archopht.1981.03930020662007.
  • Byer NE. Relationship of cystic retinal tufts to retinal detachment. Dev Ophthalmol. 1981;2:36–42.
  • Taney LS, Baumal CR. Optical coherence tomography of a cystic retinal tuft. JAMA Ophthalmol. 2014;132:1191. doi:10.1001/jamaophthalmol.2014.190.
  • Foos RY. Vitreous base, retinal tufts and retinal tears: pathogenic relationships. In: Pruett RC, Regan CDJ, eds. Retinal Congress. New York: Apple-Century-Crofts; 1974:259.
  • Straatsma BR, Foos RY, Feman SS. Degenerative disease of the peripheral retina. In: Duane DD, ed. Clinical Ophthalmology. Vol. 3. Philadelphia Harper &: Row; 1986:1.
  • Foos RY, Allen RA. Retinal tears and lesser lesions of the peripheral retina in autopsy eyes. Am J Ophthalmol. 1967;64:643–655. doi:10.1016/0002-9394(67)90571-5.
  • Cahill M, Gallagher P, Whitehead A, Acheson R. Autosomal dominant peripheral cystic retinal patches and non-cystic retinal tufts associated with peripapillary crescents, retinal breaks and uveitis. Graefes Arch Clin Exp Ophthalmol. 2001;239:102–108. doi:10.1007/s004170000239.
  • Chan CC, Koch CA, Kaiser-Kupfer MI, et al. Loss of heterozygosity for the NF2 gene in retinal and optic nerve lesions of patients with neurofibromatosis 2. J Pathol. 2002;198:14–20. doi:10.1002/path.1174.
  • Waisberg V, Rodrigues LO, Nehemy MB, et al. Spectral-Domain Optical Coherence Tomography Findings in Neurofibromatosis Type 2. Invest Ophthalmol Vis Sci. 2016;57:OCT262–267. doi:10.1167/iovs.15-18919.
  • Murakami-Nagasako F, Ohba N. Phakic retinal detachment associated with cystic retinal tuft. Graefes Arch Clin Exp Ophthalmol. 1982;219:188–192. doi:10.1007/BF02156845.
  • Hirose T, Lee KY, Schepens CL. Snowflake degeneration in hereditary vitreoretinal degeneration. Am J Ophthalmol. 1974;77:143–153. doi:10.1016/0002-9394(74)90665-5.
  • Edwards AO. Clinical features of the congenital vitreoretinopathies. Eye (Lond). 2008;22:1233–1242. doi:10.1038/eye.2008.38.
  • Chen CJ, Everett TK, Marascalco D. Snowflake degeneration: an independent entity or a variant of retinitis pigmentosa? South Med J. 1986;79:1216–1223. doi:10.1097/00007611-198610000-00006.
  • Jiao X, Ritter R 3rd, Hejtmancik JF, Wards AO. Genetic linkage of snowflake vitreoretinal degeneration to chromosome 2q36. Invest Ophthalmol Vis Sci. 2004;45:4498–4503. doi:10.1167/iovs.04-0722.
  • Lee MM, Ritter R 3rd, Hirose T, et al. Snowflake vitreoretinal degeneration: follow-up of the original family. Ophthalmology. 2003;110:2418–2426. doi:10.1016/S0161-6420(03)00828-5.
  • Hejtmancik JF, Jiao X, Li A, et al. Mutations in KCNJ13 cause autosomal-dominant snowflake vitreoretinal degeneration. Am J Hum Genet. 2008;82:174–180. doi:10.1016/j.ajhg.2007.08.002.
  • Pattnaik BR, Tokarz S, Asuma MP, et al. Snowflake vitreoretinal degeneration (SVD) mutation R162W provides new insights into Kir7.1 ion channel structure and function. PLoS One. 2013;8:e71744. doi:10.1371/journal.pone.0071744.
  • Hirose T, Wolf E, Schepens CL. Retinal functions in snowflake degeneration. Ann Ophthalmol. 1980;12:1135–1146.
  • Pollack A, Uchenik D, Chemke J, Oliver M. Prophylactic laser photocoagulation in hereditary snowflake vitreoretinal degeneration. A family report. Arch Ophthalmol. 1983;101:1536–1539. doi:10.1001/archopht.1983.01040020538005.
  • Kucukiba K, Erol N, Bilgin M. Evaluation of Peripheral Retinal Changes on Ultra-Widefield Fundus Autofluorescence Images of Patients with Age-Related Macular Degeneration. Turk J Ophthalmol. 2020;50:6–14. doi:10.4274/tjo.galenos.2019.00359.
  • Ukalovic K, Cao S, Lee S, et al. Drusen in the Peripheral Retina of the Alzheimer’s Eye. Curr Alzheimer Res. 2018;15:743–750. doi:10.2174/1567205015666180123122637.
  • Merijohn GK, Bader JD, Frantsve-Hawley J, Aravamudhan K. Clinical decision support chairside tools for evidence-based dental practice. J Evid Based Dent Pract. 2008;8:119–132. doi:10.1016/j.jebdp.2008.05.016.
  • FDI World Dental Federation. New chairside guide focuses on caries prevention. Br Dent J. 2017;223:398. doi:10.1038/sj.bdj.2017.801.
  • Royal College of Ophthalmologists: rCOphth Clinical Guidelines. https://www.rcophth.ac.uk/standards-publications-research/clinical-guidelines/
  • Hart KM, Abbott C, Ly A, et al. Optometry Australia’s chairside reference for the diagnosis and management of age-related macular degeneration. Clin Exp Optom. 2020;103:254–264. doi:10.1111/cxo.12964.
  • Centre for Eye. Health: CFEH Chairside References. https://www.centreforeyehealth.com.au/education/cfeh-educational-resources/ Accessed July 22, 2020
  • Ly A, Nivison-Smith L, Hennessy M, Kalloniatis M. Pigmented Lesions of the Retinal Pigment Epithelium. Optom Vis Sci. 2015;92:844–857. doi:10.1097/OPX.0000000000000640.
  • Chu RL, Pannullo NA, Adam CR, et al. Morphology of Peripheral Vitreoretinal Interface Abnormalities Imaged with Spectral Domain Optical Coherence Tomography. J Ophthalmol. 2019;2019:3839168. doi:10.1155/2019/3839168.