3,116
Views
0
CrossRef citations to date
0
Altmetric
Review

Imaging-based Assessment of Choriocapillaris: A Comprehensive Review

ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 405-426 | Received 26 Apr 2022, Accepted 01 Jul 2022, Published online: 18 Aug 2022

References

  • Zouache MA, Eames I, Klettner CA, et al. Form, shape and function: segmented blood flow in the choriocapillaris. Sci Rep. 2016;6(1):6. doi:10.1038/srep35754.
  • Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–168. doi:10.1016/j.preteyeres.2009.12.002.
  • Garron LK. The ultrastructure of the retinal pigment epithelium with observations on the choriocapillaris and bruch’s membrane. Trans Am Ophthalmol Soc. 1963;61:61.
  • Goldor H, Gay AJ, Gay AJ. Chorioretinal vascular occlusions with latex microspheres (A long-term study). II. Invest Ophthalmol. 1967;6:6.
  • Gay AJ, Goldor H, Smith M. Chorioretinal vascular occlusions with latex spheres. Invest Ophthalmol. 1964;3:647–56.
  • Lejoyeux R, Benillouche J, Ong J, et al. Choriocapillaris: fundamentals and advancements. Prog Retin Eye Res. 2022;87. doi:10.1016/j.preteyeres.2021.100997.
  • Torczynski E, Tso MOM. The architecture of the choriocapillaris at the posterior pole. Am J Ophthalmol. 1976;81:428–440. doi:10.1016/0002-9394(76)90298-1.
  • Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR. Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol. 2017;135(11):1197. doi:10.1001/jamaophthalmol.2017.3904.
  • Stanga PE, Lim JI, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation. Ophthalmology. 2003;110(1):15–21. doi:10.1016/s0161-6420(02)01563-4.
  • Meira J, Marques ML, Falcão-Reis F, Rebelo Gomes E, Carneiro A. Immediate reactions to fluorescein and indocyanine green in retinal angiography: review of literature and proposal for patient’s evaluation. Clin Ophthalmol. 2020;14:171–178. doi:10.2147/opth.s234858.
  • Ramrattan RS, Van der Schaft TL, Mooy CM, De Bruijn WC, Mulder PGH, De Jong PTVM. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994;35:2857–2864.
  • Reiner A, Fitzgerald MEC, Del Mar N, Li C. Neural control of choroidal blood flow. Prog Retin Eye Res. 2018;64:96–130. doi:10.1016/j.preteyeres.2017.12.001.
  • Sellheyer K. Development of the choroid and related structures. Eye. 1990;4(2):255–261. doi:10.1038/eye.1990.37.
  • Olver JM. Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye. 1990;4(2):262–272. doi:10.1038/eye.1990.38.
  • Bill A, Sperber G, Ujiie K. Physiology of the choroidal vascular bed. Int Ophthalmol. 1983;6(2):101–107. doi:10.1007/bf00127638.
  • Zouache MA, Eames I, Luthert PJ. Blood flow in the choriocapillaris. J Fluid Mech. 2015;774:37–66. doi:10.1017/jfm.2015.243.
  • Hayreh SS. In vivo choroidal circulation and its watershed zones. Eye. 1990;4(2):273–289. doi:10.1038/eye.1990.39.
  • Marmor MF, Cohen DS, Abdul-Rahim AS. Metabolic factors in the maintenance of retinal adhesion, Oct 14–19, 1979. Proc Conf Subretinal Space, 1981:77–85, Jerusalem. doi:10.1007/978-94-009-8653-4_6.
  • Hayreh SS. Physiological anatomy of the choroidal vascular bed. Int Ophthalmol. 1983;6(2):85–93. doi:10.1007/bf00127636.
  • Drexler W, Fujimoto J. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. 2008;27(1):45–88. doi:10.1016/j.preteyeres.2007.07.005.
  • Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. 2013;58(5):387–429. doi:10.1016/j.survophthal.2012.12.001.
  • Vira J, Marchese A, Singh RB, Agarwal A. Swept-source optical coherence tomography imaging of the retinochoroid and beyond. Expert Rev Med Devices. 2020;17(5):413–426. doi:10.1080/17434440.2020.1755256.
  • Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. 2018;67:30–55. doi:10.1016/j.preteyeres.2018.07.002.
  • Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–155. doi:10.1016/j.preteyeres.2015.10.002.
  • Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi:10.1016/j.preteyeres.2017.11.003.
  • Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121(7):1435–1444.doi:10.1016/j.ophtha.2014.01.034.
  • Kashani AH, Chen C-L, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. doi:10.1016/j.preteyeres.2017.07.002.
  • Ploner SB, Moult EM, Choi W, et al. Toward quantitative optical coherence tomography angiography. Retina. 2016;36(Supplement 1):S118–26.doi:10.1097/iae.0000000000001328.
  • Choi W, Waheed NK, Moult EM, et al. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy. Retina. 2017;37(1):11–21.doi:10.1097/iae.0000000000001250.
  • Velaga SB, Nittala MG, Vupparaboina KK, et al. Choroidal vascularity index and choroidal thickness in eyes with reticular pseudodrusen. Retina. 2019;40(4):612–617.doi:10.1097/iae.0000000000002667.
  • Agrawal R, Gupta P, Tan K-A, Cheung CMG, Wong T-Y, Cheng C-Y. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6(1):6. doi:10.1038/srep21090.
  • Sonoda S, Sakamoto T, Yamashita T, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Investig Opthalmol Vis Sci. 2014;55(6):3893.doi:10.1167/iovs.14-14447.
  • Keenan TD, Klein B, Agrón E, Chew EY, Cukras CA, Wong WT. Choroidal thickness and vascularity vary with disease severity and subretinal drusenoid deposit presence in nonadvanced age-related macular degeneration. Retina. 2020;40(4):632–642. doi:10.1097/iae.0000000000002434.
  • Invernizzi A, Agarwal A, Cozzi M, Viola F, Nguyen QD, Staurenghi G. Enhanced depth imaging optical coherence tomography features in areas of choriocapillaris hypoperfusion. Retina. 2016;36(10):2013–2021. doi:10.1097/IAE.0000000000001031.
  • Betzler BK, Ding J, Wei X, et al. Choroidal vascularity index: a step towards software as a medical device. Br J Ophthalmol. 2021. doi:10.1136/bjophthalmol-2021-318782.
  • Urs R, Ketterling JA, Yu ACH, Lloyd HO, Yiu BYS, Silverman RH. Ultrasound imaging and measurement of choroidal blood flow. Transl Vis Sci Technol. 2018;7(5):5. doi:10.1167/tvst.7.5.5.
  • Arya M, Rashad R, Sorour O, Moult EM, Fujimoto JG, Waheed NK. Optical coherence tomography angiography (OCTA) flow speed mapping technology for retinal diseases. Expert Rev Med Devices. 2018;15(12):875–882. doi:10.1080/17434440.2018.1548932.
  • Cavallerano A, Katalinic P, Cavallerano J. Joslin vision network examination for diabetic retinopathy in a veterans hospital - PHASE 2. Optom Vis Sci. 2002;79(Supplement):160. doi:10.1097/00006324-200212001-00307.
  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843.
  • Langham ME, Grebe R, Hopkins S, Marcus S, Sebag M. Choroidal blood flow in diabetic retinopathy. Exp Eye Res. 1991;52(2):167–173. doi:10.1016/0014-4835(91)90256-e.
  • MacKinnon JR, O’Brien C, Swa K, Aspinall P, Butt Z, Cameron D. Pulsatile ocular blood flow in untreated diabetic retinopathy. Acta Ophthalmol Scand. 2009;75(6):661–664. doi:10.1111/j.1600-0420.1997.tb00626.x.
  • Geyer O, Neudorfer M, Snir T, et al. Pulsatile ocular blood flow in diabetic retinopathy. Acta Ophthalmol Scand. 1999;77(5):522–525.doi:10.1034/j.1600-0420.1999.770507.x.
  • Nagaoka T, Kitaya N, Sugawara R, et al. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol. 2004 88;88(8):1060–1063. doi:10.1136/bjo.2003.035345.
  • Mendívil A, Cuartero V, Mendívil MP. Ocular blood flow velocities in patients with proliferative diabetic retinopathy before and after scatter photocoagulation: a prospective study. Eur J Ophthalmol. 1995;5(4):259–264. doi:10.1177/112067219500500411.
  • Arai T, Numata K, Tanaka K, et al. Ocular arterial flow hemodynamics in patients with diabetes mellitus. J Ultrasound Med. 1998;17(11):675–681.doi:10.7863/jum.1998.17.11.675.
  • Hidayat AA, Fine BS. Diabetic Choroidopathy. Ophthalmology. 1985;92(4):512–522. doi:10.1016/s0161-6420(85)34013-7.
  • Fryczkowski AW, Hodes BL, Walker J. Diabetic choroidal and iris vasculature scanning electron microscopy findings. Int Ophthalmol. 1989;13(4):269–279. doi:10.1007/bf02280087.
  • Cao J. Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol. 1998;116(5):589. doi:10.1001/archopht.116.5.589.
  • Lutty GA. Diabetic choroidopathy. Vision Res. 2017;139:161–167. doi:10.1016/j.visres.2017.04.011.
  • Melancia D, Vicente A, Cunha JP, Abegão Pinto L, Ferreira J. Diabetic choroidopathy: a review of the current literature. Graefe’s Arch Clin Exp Ophthalmol. 2016;254(8):1453–1461. doi:10.1007/s00417-016-3360-8.
  • Shiragami C, Shiraga F, Matsuo T, Tsuchida Y, Ohtsuki H. Risk factors for diabetic choroidopathy in patients with diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2002;240(6):436–442. doi:10.1007/s00417-002-0451-5.
  • Hua R, Liu L, Wang X, Chen L. Imaging evidence of diabetic choroidopathy in vivo: angiographic pathoanatomy and choroidal-enhanced depth imaging. PLoS One. 2013;8(12):e83494. doi:10.1371/journal.pone.0083494.
  • Carnevali A, Sacconi R, Corbelli E, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695–702.doi:10.1007/s00592-017-0996-8.
  • Tan K-A, Laude A, Yip V, Loo E, Wong EP, Agrawal R. Choroidal vascularity index - a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus?. Acta Ophthalmol. 2016;94(7):e612–6. doi:10.1111/aos.13044.
  • Wang JC, Laíns I, Providência J, et al. Diabetic choroidopathy: choroidal vascular density and volume in diabetic retinopathy with swept-source optical coherence tomography. Am J Ophthalmol. 2017;184:75–83. doi:10.1016/J.AJO.2017.09.030.
  • Kim M, Ha MJ, Choi SY, Park Y-H, Rana V. Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep. 2018;8(1):8. doi:10.1038/s41598-017-18511-7.
  • Borrelli E, Sacconi R, Querques G, Bandello F. Optical coherence tomography angiography in the management of diabetic retinopathy. Indian J Ophthalmol. 2021;69(11):3009. doi:10.4103/IJO.IJO_1367_21.
  • Dai Y, Zhou H, Zhang Q, et al. Quantitative assessment of choriocapillaris flow deficits in diabetic retinopathy: A swept-source optical coherence tomography angiography study. PLoS One. 2020;15. doi:10.1371/JOURNAL.PONE.0243830.
  • Zhang Y, Qin Y, Wang S, Liu Y, Li X, Sun X. Higher choroidal thickness and lower choriocapillaris blood flow signal density based on optical coherence tomography angiography in diabetics. Sci Rep. 2021;11(1):11. doi:10.1038/S41598-021-85065-0.
  • Borrelli E, Palmieri M, Viggiano P, Ferro G, Mastropasqua R. Photoreceptor damage in diabetic choroidopathy. Retina. 2020;40(6):1062–1069. doi:10.1097/IAE.0000000000002538.
  • Dodo Y, Suzuma K, Ishihara K, et al. Clinical relevance of reduced decorrelation signals in the diabetic inner choroid on optical coherence tomography angiography. Sci Rep. 2017;7(1):7.doi:10.1038/S41598-017-05663-9.
  • Sawada O, Ichiyama Y, Obata S, et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2018;256(7):1275–1280.doi:10.1007/s00417-018-3992-y.
  • Cui Y, Zhu Y, Wang JC, et al. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy. Br J Ophthalmol. 2021;105(4):577–581.doi:10.1136/bjophthalmol-2020-316245.
  • You QS, Guo Y, Wang J, et al. Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography. Retina. 2020;4(1):40.doi:10.1097/IAE.0000000000002487.
  • Takahashi A, Nagaoka T, Sato E, Yoshida A. Effect of panretinal photocoagulation on choroidal circulation in the foveal region in patients with severe diabetic retinopathy. Br J Ophthalmol. 2008;92(10):1369–1373. doi:10.1136/bjo.2007.136028.
  • Okamoto M, Yamashita M, Ogata N. Effects of intravitreal injection of ranibizumab on choroidal structure and blood flow in eyes with diabetic macular edema. Graefe’s Arch Clin Exp Ophthalmol. 2018;256(5):885–892. doi:10.1007/s00417-018-3939-3.
  • Conti FF, Song W, Rodrigues EB, Singh RP. Changes in retinal and choriocapillaris density in diabetic patients receiving anti-vascular endothelial growth factor treatment using optical coherence tomography angiography. Int J Retin Vitr. 2019 5; 5(1). doi:10.1186/s40942-019-0192-9
  • May CA. Chronologic versus biologic aging of the human choroid. Sci World J. 2013;2013:1–7. doi:10.1155/2013/378206.
  • Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Investig Opthalmol Vis Sci. 2010;51(4):2173. doi:10.1167/iovs.09-4383.
  • Bin WW, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing eye study. Ophthalmology. 2013;120(1):175–180.doi:10.1016/j.ophtha.2012.07.048.
  • Zhou H, Dai Y, Shi Y, et al. Age-Related changes in choroidal thickness and the volume of vessels and stroma using Swept-Source OCT and fully automated algorithms. Ophthalmol Retina. 2020;4(2):204–215.doi:10.1016/j.oret.2019.09.012.
  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16.doi:10.1016/s2214-109x(13)70145-1.
  • Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S. Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis. 1999;5:35.
  • Mori F. Pulsatile ocular blood flow study: decreases in exudative age related macular degeneration. Br J Ophthalmol. 2001;85(5):531–533. doi:10.1136/bjo.85.5.531.
  • Arya M, Sabrosa AS, Duker JS, Waheed NK. Choriocapillaris changes in dry age-related macular degeneration and geographic atrophy: a review. Eye Vis. 2018 5; 5(1). doi:10.1186/s40662-018-0118-x
  • Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration. Retina. 2013;33(2):265–276. doi:10.1097/iae.0b013e31827e25e0.
  • Moreira-Neto CA, Moult EM, Fujimoto JG, Waheed NK, Ferrara D. Choriocapillaris loss in advanced age-related macular degeneration. J Ophthalmol. 2018;2018:1–6. doi:10.1155/2018/8125267.
  • Moult E, Choi W, Waheed NK, et al. Ultrahigh-speed Swept-Source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):496–505.doi:10.3928/23258160-20141118-03.
  • Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013;33(8):1659–1672. doi:10.1097/iae.0b013e3182953df4.
  • Gallego-Pinazo R, Dolz-Marco R, Freund KB. Pachychoroid. Choroidal Disord. 2017:161–170. doi:10.1016/b978-0-12-805313-3.00010-7
  • Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina. 2016;36(3):499–516. doi:10.1097/iae.0000000000000742.
  • Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F. Pachychoroid. Retina. 2015;35(1):10–16. doi:10.1097/iae.0000000000000287.
  • Baek J, Kook L, Lee WK, Müri RM, Knoch D. Choriocapillaris flow impairments in association with pachyvessel in early stages of pachychoroid. Sci Rep. 2019;9(1):9. doi:10.1038/s41598-019-42052-w.
  • Okubo A, Ito M, Sameshima M, Uemura A, Sakamoto T. Pulsatile blood flow in the polypoidal choroidal vasculopathy. Ophthalmology. 2005;112(8):1436–1441. doi:10.1016/j.ophtha.2005.03.017.
  • Alasil T, Ferrara D, Adhi M, et al. En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. Am J Ophthalmol. 2015;159(4):634–643.e2.doi:10.1016/j.ajo.2014.12.012.
  • Costa RA, Navajas EV, Farah ME, Calucci D, Cardillo JA, Scott IU. Polypoidal choroidal vasculopathy: angiographic characterization of the network vascular elements and a new treatment paradigm. Prog Retina Eye Res. 2005;24(5):560–586. doi:10.1016/j.preteyeres.2005.01.001.
  • Sasahara M, Tsujikawa A, Musashi K, et al. Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability. Am J Ophthalmol. 2006;142(4):601–607.e1.doi:10.1016/j.ajo.2006.05.051.
  • Inoue M, Balaratnasingam C, Freund KB. Optical coherence tomography angiography of polypoidal choroidal vasculopathy and polypoidal choroidal neovascularization. Retina. 2015;35(11):2265–2274. doi:10.1097/iae.0000000000000777.
  • Srour M, Querques G, Semoun O, et al. Optical coherence tomography angiography characteristics of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2016;100(11):1489–1493.doi:10.1136/bjophthalmol-2015-307892.
  • Wong CW, Yanagi Y, Lee WK, et al. Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians. Prog Retina Eye Res. 2016;53. doi:10.1016/j.preteyeres.2016.04.002.
  • Semeraro F, Morescalchi F, Russo A, et al. Central serous chorioretinopathy: pathogenesis and management. Clin Ophthalmol. 2019;13:2341–2352. doi:10.2147/opth.s220845.
  • Saito W, Hashimoto Y, Hirooka K, Ishida S. Changes in choroidal blood flow velocity in patients diagnosed with central serous chorioretinopathy during follow-up for pachychoroid pigment epitheliopathy. Am J Ophthalmol Case Rep. 2020;18:100651. doi:10.1016/j.ajoc.2020.100651.
  • Kitaya N, Nagaoka T, Hikichi T, et al. Features of abnormal choroidal circulation in central serous chorioretinopathy. Br J Ophthalmol. 2003;87(6):709–712.doi:10.1136/bjo.87.6.709.
  • Mrejen S, Sarraf D, Chexal S, Wald K, Freund KB. Choroidal involvement in acute posterior multifocal placoid pigment epitheliopathy. Ophthalmic Surg Lasers Imaging Retina 2016;47:20–26. doi:10.3928/23258160-20151214-03.
  • Shinojima A, Kawamura A, Mori R, Fujita K, Yuzawa M. Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy. Ophthalmologica. 2016;236(2):108–113. doi:10.1159/000448436.
  • Qu Y, Gong D, Yu W, Dong F. Characteristics of the choriocapillaris layer in optical coherence tomography angiography of acute central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina. 2017;48(12):1000–1005. doi:10.3928/23258160-20171130-07.
  • Rochepeau C, Kodjikian L, Garcia M-A, et al. Optical coherence tomography angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy. Am J Ophthalmol. 2018;194:26–34. doi:10.1016/j.ajo.2018.07.004.
  • Yun C, Huh J, Ahn SM, et al. Choriocapillaris flow features and choroidal vasculature in the fellow eyes of patients with acute central serous chorioretinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2018;257(1):57–70.doi:10.1007/s00417-018-4179-2.
  • Matet A, Daruich A, Hardy S, Behar-Cohen F. Patterns of choriocapillaris flow signal voids in central serous chorioretinopathy. Retina. 2019;39(11):2178–2188. doi:10.1097/iae.0000000000002271.
  • Dell’omo R, Wong R, Marino M, Konstantopoulou K, Pavesio C. Relationship between different fluorescein and indocyanine green angiography features in multiple evanescent white dot syndrome. Br J Ophthalmol. 2009;94(1):59–63. doi:10.1136/bjo.2009.163550.
  • Herbort CP, LeHoang P, Guex-Crosier Y. Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology 1998;105:432–440. doi:10.1016/s0161-6420(98)93024-x.
  • Ie D, Glaser BM, Murphy RP, Gordon LW, Sjaarda RN, Thompson JT. Indocyanine green angiography in multiple evanescent white-dot syndrome. Am J Ophthalmol. 1994;117(1):7–12. doi:10.1016/s0002-9394(14)73008-9.
  • Pichi F, Srvivastava SK, Chexal S, et al. En face optical coherence tomography and optical coherence tomography angiography of multiple evanescent white dot syndromE. Retina. 2016;36(Supplement 1):S178–88.doi:10.1097/iae.0000000000001255.
  • Yannuzzi NA, Swaminathan SS, Zheng F, et al. Swept-Source OCT angiography shows sparing of the choriocapillaris in multiple evanescent white dot syndrome. Ophthalmic Surg Lasers Imaging Retina. 2017;48(1):69–74.doi:10.3928/23258160-20161219-10.
  • Pereira F, Lima LH, Sah, et al. Swept-source OCT in patients with multiple evanescent white dot syndrome. J Ophthalmic Inflamm Infect. 2018;8(1):8. doi:10.1186/s12348-018-0159-2.
  • Zicarelli F, Mantovani A, Preziosa C, Staurenghi G. Multimodal imaging of multiple evanescent white dot syndrome: a new interpretation. Ocul Immunol Inflamm. 2019;28(5):814–820. doi:10.1080/09273948.2019.1635169.
  • Obana A, Kusumi M, Miki T. Indocyanine green angiographic aspects of multiple evanescent white dot syndrome. Retina. 1996;16(2):97–104. doi:10.1097/00006982-199616020-00002.
  • Aoyagi R, Hayashi T, Masai A, et al. Subfoveal choroidal thickness in multiple evanescent white dot syndrome. Clin Exp Optom. 2012;95(2):212–217.doi:10.1111/j.1444-0938.2011.00668.x.
  • Fiore T, Iaccheri B, Cerquaglia A, et al. Outer retinal and choroidal evaluation in multiple evanescent white dot syndrome (MEWDS): an enhanced depth imaging optical coherence tomography study. Ocul Immunol Inflamm. 2016;26(3):428–434.doi:10.1080/09273948.2016.1231329.
  • Hashimoto Y, Saito W, Saito M, et al. Decreased choroidal blood flow velocity in the pathogenesis of multiple evanescent white dot syndrome. Graefe’s Arch Clin Exp Ophthalmol. 2014;253(9):1457–1464.doi:10.1007/s00417-014-2831-z.
  • Gass JDM. Acute posterior multifocal placoid pigment epitheliopathy. Arch Ophthalmol 1968;80:177–185. doi:10.1001/archopht.1968.00980050179005.
  • Van Buskirk EM, Lessell S, Friedman E. Pigmentary epitheliopathy and erythema nodosum. Arch Ophthalmol. 1971;85(3):369–372. doi:10.1001/archopht.1971.00990050371025.
  • Deutman AF, Boen-Tan TN, Oosterhuis JA. Acute posterior multifocal placoid pigment epitheliopathy. Ophthalmologica 1973;167:368–372. doi:10.1159/000306976.
  • Yuzawa M, Kawamura A, Matsui M. Indocyanine green video angiographic findings in acute posterior multifocal placoid pigment epitheliopathy. Acta Ophthalmol 2009;72:128–133. doi:10.1111/j.1755-3768.1994.tb02753.x.
  • Park D, Schatz H, McDonald HR, Johnson RN. Indocyanine green angiography of acute mult-if-ocal posterior placoid pigment epitheliopathy. Ophthalmology 1995;102:1877–1883. doi:10.1016/s0161-6420(95)30780-4.
  • Dhaliwal RS, Maguire AM, Flower RW, Arribas NP. Acute posterior multifocal placoid pigment epitheliopathy. Retina. 1993;13(4):317–325. doi:10.1097/00006982-199313040-00009.
  • Park D, Schatz H, Mcdonald HR, Johnson RN. Acute multifocal posterior placoid pigment epitheliopathy: a theory of pathogenesis. Retina. 1995;15(4):351–352. doi:10.1097/00006982-199515040-00013.
  • Spaide RF. Autofluorescence imaging of acute posterior multifocal placoid pigment epitheliopathy. Retina. 2006;26(4):479–482. doi:10.1097/00006982-200604000-00020.
  • Furino C, Shalchi Z, Grassi MO, et al. OCT angiography in acute posterior multifocal placoid pigment epitheliopathy. Ophthalmic Surg Lasers Imaging Retina 2019;50:428–436. doi:10.3928/23258160-20190703-04.
  • Klufas MA, Phasukkijwatana N, Iafe NA, et al. Optical coherence tomography angiography reveals choriocapillaris flow reduction in placoid chorioretinitis. Ophthalmol Retina. 2017;1(1):77–91.doi:10.1016/j.oret.2016.08.008.
  • Burke TR, Chu CJ, Salvatore S, et al. Application of OCT-angiography to characterise the evolution of chorioretinal lesions in acute posterior multifocal placoid pigment epitheliopathy. Eye 2017;31:1399–1408. doi:10.1038/eye.2017.180.
  • Spaide RF, Goldberg N, Freund KB. Redefining multifocal choroiditis and panuveitis and punctate inner choroidopathy through multimodal imaging. Retina. 2013;33(7):1315–1324. doi:10.1097/iae.0b013e318286cc77.
  • Campos J, Campos A, Beselga D, Mendes S, Neves A, Sousa JPC. Punctate inner choroidopathy: a clinical case report. Case Rep Ophthalmol. 2013;4(3):155–159. doi:10.1159/000355389.
  • Li J, Li Y, Li H, Zhang L. Imageology features of different types of multifocal choroiditis. BMC Ophthalmol. 201919. doi:10.1186/s12886-019-1045-x
  • Tavallali A, Yannuzzi L. Idiopathic multifocal choroiditis. J Ophthalmic Vis Res. 2016;11(4):429. doi:10.4103/2008-322x.194141.
  • Zahid S, Chen KC, Jung JJ, et al. Optical coherence tomography angiography of chorioretinal lesions due to idiopathic multifocal choroiditis. Retina. 2017;37(8):1451–1463.doi:10.1097/iae.0000000000001381.
  • Cheng L, Chen X, Weng S, et al. Spectral-Domain optical coherence tomography angiography findings in multifocal choroiditis with active lesions. Am J Ophthalmol. 2016;169:145–161. doi:10.1016/j.ajo.2016.06.029.
  • Thompson IA, Caplash S, Akanda M, et al. Optical coherence tomography angiography changes in choroidal vasculature following treatment in punctate inner choroidopathy. Ocul Immunol Inflamm. 2020:1–7. doi:10.1080/09273948.2019.1705986.
  • Kim EL, Thanos A, Yonekawa Y, et al. Optical coherence tomography angiography findings in punctate inner choroidopathy. Ophthalmic Surg Lasers Imaging Retina. 2017;48(10):786–792.doi:10.3928/23258160-20170928-02.
  • Hampton BM, Aderman CM, Flynn HW, Sridhar J. Optical coherence tomography angiography of punctate inner choroidopathy. Case Rep Ophthalmol Med. 2017;2017:1–3. doi:10.1155/2017/4754231.
  • Vezzola D, Allegrini D, Borgia A, et al. Swept-source optical coherence tomography and optical coherence tomography angiography in acquired toxoplasmic chorioretinitis: a case report. J Med Case Rep. 2018;12(1):12.doi:10.1186/s13256-018-1902-x.
  • Mansour AM, Jampol LEEM, Packo KH, Hrisomalos NF. Macular serpiginous choroiditis. Retina. 1988;8(2):125–131. doi:10.1097/00006982-198808020-00008.
  • Giovannini A, Mariotti C, Ripa E, Scassellati-Sforzolini B. Indocyanine green angiographic findings in serpiginous choroidopathy. Br J Ophthalmol. 1996;80(6):536–540. doi:10.1136/bjo.80.6.536.
  • Mandadi SKR, Agarwal A, Aggarwal K, et al. Novel findings on optical coherence tomography angiography in patients with tubercular serpiginous-like choroiditis. Retina. 2017;37(9):1647–1659.doi:10.1097/iae.0000000000001412.
  • El Ameen A, Herbort CP. Serpiginous choroiditis imaged by optical coherence tomography angiography. Retin Cases Brief Rep. 2018;12(4):279–285. doi:10.1097/icb.0000000000000512.
  • Desai R, Nesper P, Goldstein DA, Fawzi AA, Jampol LM, Gill M. OCT Angiography imaging in serpiginous choroidopathy. Ophthalmol Retin. 2018;2(4):351–359. doi:10.1016/j.oret.2017.07.023.
  • Pakzad-Vaezi K, Khaksari K, Chu Z, Van Gelder RN, Wang RK, Pepple KL. Swept-Source OCT angiography of serpiginous choroiditis. Ophthalmol Retin. 2018;2(7):712–719. doi:10.1016/j.oret.2017.11.001.
  • Minos E, Barry RJ, Southworth S, et al. Birdshot chorioretinopathy: current knowledge and new concepts in pathophysiology, diagnosis, monitoring and treatment. Orphanet J Rare Dis. 2016;11:11. doi:10.1186/s13023-016-0429-8.
  • Shah KH, Levinson RD, Yu F, et al. Birdshot chorioretinopathy. Surv Ophthalmol. 2005;50(6):519–541.doi:10.1016/j.survophthal.2005.08.004.
  • Papadia M, Herbort C. Indocyanine green angiography (ICGA) is essential for the early diagnosis of birdshot chorioretinopathy. Klin Monbl Augenheilkd. 2012;229(4):348–352. doi:10.1055/s-0031-1299224.
  • Reddy AK, Gonzalez MA, Henry CR, Yeh S, Sobrin L, Albini TA. Diagnostic sensitivity of indocyanine green angiography for birdshot chorioretinopathy. JAMA Ophthalmol. 2015;133(7):840. doi:10.1001/jamaophthalmol.2015.0822.
  • Pepple KL, Chu Z, Weinstein J, Munk MR, Van Gelder RN, Wang RK. Use of en face swept-source optical coherence tomography angiography in identifying choroidal flow voids in 3 patients with birdshot chorioretinopathy. JAMA Ophthalmol. 2018;136(11):1288. doi:10.1001/jamaophthalmol.2018.3474.
  • Agrawal R, Agarwal A, Jabs DA, et al. Standardization of Nomenclature for Ocular Tuberculosis–Results of Collaborative Ocular Tuberculosis Study (COTS) Workshop. Ocul Immunol Inflamm. 2019. doi:10.1080/09273948.2019.1653933.
  • Agrawal R, Gunasekeran DV, Agarwal A, et al. The collaborative ocular tuberculosis study (COTS)-1: a multinational description of the spectrum of choroidal involvement in 245 patients with tubercular uveitis. Ocul Immunol Inflamm. 2018. doi:10.1080/09273948.2018.1489061.
  • Agarwal A, Marchese A, Rabiolo A, Agrawal R, Bansal R, Gupta V. Clinical and imaging factors associated with the outcomes of tubercular Serpiginous-like choroiditis. Am J Ophthalmol. 2020;220:160–169. doi:10.1016/J.AJO.2020.07.024.
  • Agarwal A, Aggarwal K, Mandadi SKR, et al. Longitudinal follow-up of tubercular serpiginous-like choroiditis using optical coherence tomography angiography. Retina. 2021;41(4):793–803.doi:10.1097/IAE.0000000000002915.
  • Wang H, Tan SZ, Aslam T, Jones NP, Steeples LR. Multimodal evaluation of presumed tuberculous serpiginous-like choroiditis. Ocul Immunol Inflamm. 2018;27(7):1149–1153. doi:10.1080/09273948.2018.1501497.
  • Agarwal A, Agrawal R, Khandelwal N, et al. Choroidal structural changes in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm. 2018;26. doi:10.1080/09273948.2017.1370650.
  • Gupta A, Bansal R, Gupta V, Sharma A. Fundus autofluorescence in serpiginouslike choroiditis. Retina. 2012;32(4):814–825. doi:10.1097/iae.0b013e3182278c41.
  • Agarwal A, Aggarwal K, Deokar A, et al. Optical coherence tomography angiography features of paradoxical worsening in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm. 2016;24(6):621–630.doi:10.1080/09273948.2016.1207785.
  • Agarwal A, Aggarwal K, Pichi F, et al. Clinical and multimodal imaging clues in differentiating between tuberculomas and sarcoid choroidal granulomas. Am J Ophthalmol. 2021;226:42–55. doi:10.1016/j.ajo.2021.01.025.
  • Agarwal A, Invernizzi A, Markan A, et al. Imaging in tubercular choroiditis: current concepts. Ocul Immunol Inflamm. 2020;28. doi:10.1080/09273948.2020.1817500.
  • Jain S, Agarwal A, Gupta V. Resolution of large choroidal tuberculoma following monotherapy with intravitreal ranibizumab. Ocul Immunol Inflamm. 2020;28. doi:10.1080/09273948.2019.1582786.
  • Aksoy FE, Altan C, Basarir B. Multimodal imaging of a choroidal granuloma as a first sign of tuberculosis. Photodiagn Photodyn Ther. 2020;29:101580. doi:10.1016/j.pdpdt.2019.101580.
  • Goldenberg D, Goldstein M, Loewenstein A, Habot-Wilner Z. Vitreal, retinal, and choroidal findings in active and scarred toxoplasmosis lesions: a prospective study by spectral-domain optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol. 2013;251(8):2037–2045. doi:10.1007/s00417-013-2334-3.
  • Park JH, Lee S-Y, Lee EK. Morphological characteristics of ocular toxoplasmosis and its regression pattern on swept-source optical coherence tomography angiography: a case report. BMC Ophthalmol. 2019;19(1):19. doi:10.1186/s12886-019-1209-8.
  • Zicarelli F, Pichi F, Parrulli S, et al. Acute posterior ocular toxoplasmosis: an optical coherence tomography angiography and dye angiography study. Ocul Immunol Inflamm. 2021. doi:10.1080/09273948.2021.1977831.
  • Du L, Kijlstra A, Yang P. Vogt-Koyanagi-Harada disease: novel insights into pathophysiology, diagnosis and treatment. Prog Retin Eye Res. 2016;55:52. doi:10.1016/j.preteyeres.2016.02.002.
  • Yang P, Zhong Y, Du L, et al. Development and evaluation of diagnostic criteria for Vogt-Koyanagi-Harada disease. JAMA Ophthalmol. 2018;136. doi:10.1001/jamaophthalmol.2018.2664.
  • Damico FM, Kiss S, Young LH. Vogt-Koyanagi-Harada disease. Semin Ophthalmol. 2005;20(3):183–190. doi:10.1080/08820530500232126.
  • Read R, … NR-C opinion in, 2000 undefined. Vogt-Koyanagi-Harada disease. JournalsLwwCom. n.d.
  • Sakata VM, Da Silva FT, Hirata CE, De Carvalho JF, Yamamoto JH. Diagnosis and classification of Vogt-Koyanagi-Harada disease. Autoimmun Rev. 2014;13. doi:10.1016/j.autrev.2014.01.023.
  • Rao NA. Pathology of Vogt-Koyanagi-Harada disease. Int Ophthalmol. 2007;27. doi:10.1007/s10792-006-9029-2.
  • Das D, Boddepalli A, Biswas J. Clinicopathological and immunohistochemistry correlation in a case of Vogt-Koyanagi-Harada disease. Indian J Ophthalmol. 2019;67. doi:10.4103/ijo.IJO_1800_18.
  • Yang P, Liu S, Zhong Z, et al. Comparison of clinical features and visual outcome between sympathetic ophthalmia and Vogt–Koyanagi–Harada disease in Chinese patients. Ophthalmology. 2019;126. doi:10.1016/j.ophtha.2019.03.049.
  • Chan CC. Relationship between Sympathetic Ophthalmia, Phacoanaphylactic Endophthalmitis, and Vogt-Koyanagi-Harada Disease. Ophthalmology. 1988;95. doi:10.1016/S0161-6420(88)33146-5.
  • Al-Halafi A, Dhibi HA, Hamade IH, Bou Chacra CT, Tabbara KF. The association of systemic disorders with Vogt-Koyanagi-Harada and sympathetic ophthalmia. Graefe’s Arch Clin Exp Ophthalmol. 2011;249. doi:10.1007/s00417-011-1727-4.
  • Shah DN, Al-Moujahed A, Newcomb CW, et al. Exudative retinal detachment in ocular inflammatory diseases: risk and predictive factors. Am J Ophthalmol. 2020;218:279–287. doi:10.1016/J.AJO.2020.06.019.
  • Rao NA, Marak GE, Ishibashi T, Tawara A, Harada S. Sympathetic ophthalmia simulating Vogt-Koyanagi-Harada’s disease: a clinico-pathologic study of four cases. Jpn J Ophthalmol. 1983;27:27.
  • Da Silva FT, Hirata CE, Sakata VM, et al. Indocyanine green angiography findings in patients with long-standing Vogt-Koyanagi-Harada disease: a cross-sectional study. BMC Ophthalmol. 2012;12:12. doi:10.1186/1471-2415-12-40.
  • Bouchenaki N, Herbort CP. The contribution of indocyanine green angiography to the appraisal and management of Vogt-Koyanagi-Harada disease. Ophthalmology. 2001;108. doi:10.1016/S0161-6420(00)00428-0.
  • Bouchenaki N, Herbort CP. Indocyanine green angiography guided management of Vogt-Koyanagi-Harada disease. J Ophthalmic Vis Res. 2011;6(4):241–8.
  • Abouammoh MA, Gupta V, Hemachandran S, Herbort CP, Abu El-Asrar AM. Indocyanine green angiographic findings in initial-onset acute Vogt–Koyanagi–Harada disease. Acta Ophthalmol. 2016;94. doi:10.1111/aos.12974.
  • Herbort CP, Mantovani A, Bouchenaki N. Indocyanine green angiography in Vogt-Koyanagi-Harada disease: angiographic signs and utility in patient follow-up. Int Ophthalmol. 2007;27. doi:10.1007/s10792-007-9060-y.
  • Miyanaga M, Kawaguchi T, Miyata K, Horie S, Mochizuki M, Herbort CP. Indocyanine green angiography findings in initial acute pretreatment Vogt-Koyanagi-Harada disease in Japanese patients. Jpn J Ophthalmol. 2010;54. doi:10.1007/s10384-010-0853-6.
  • Jeyaraman VA, Sudharshan S, Selvakumar A, Bassi S, Noronha OV. Isolated cortical blindness without simultaneous neurological involvement in progressive multifocal leukoencephalopathy in a patient with human immune deficiency virus infection. J Ophthalmic Inflamm Infect. 2013;3(1):3. doi:10.1186/1869-5760-3-3.
  • Rostaqui O, Querques G, Haymann P, Fardeau C, Coscas G, Souied EH. Visualization of sarcoid choroidal granuloma by enhanced depth imaging optical coherence tomography. Ocul Immunol Inflamm. 2014;22. doi:10.3109/09273948.2013.835428.
  • Invernizzi A, Mapelli C, Viola F, et al. Choroidal granulomas visualized by enhanced depth imaging optical coherence tomography. Retina. 2015 35;35(3):525–531. doi:10.1097/IAE.0000000000000312.
  • Invernizzi A, Agarwal A, Mapelli C, Nguyen QD, Staurenghi G, Viola F. Longitudinal follow-up of choroidal granulomas using enhanced depth imaging optical coherence tomography. Retina. 2017;37. doi:10.1097/IAE.0000000000001128.
  • Ishihara M, Shibuya E, Tanaka S, Mizuki N. Diagnostic and therapeutic evaluation of multiple choroidal granulomas in a patient with confirmed sarcoidosis using enhanced depth imaging optical coherence tomography. Int Ophthalmol. 2018;38. doi:10.1007/s10792-017-0720-2.
  • Aggarwal K, Agarwal A, Mahajan S, et al. The role of optical coherence tomography angiography in the diagnosis and management of acute Vogt–Koyanagi–Harada disease. Ocul Immunol Inflamm. 2018 26;26(1):142–153. doi:10.1080/09273948.2016.1195001.
  • Aggarwal K, Agarwal A, Deokar A, et al. Distinguishing features of acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy on optical coherence tomography angiography and en face optical coherence tomography imaging. J Ophthalmic Inflamm Infect. 2017;7(1):7.doi:10.1186/s12348-016-0122-z.
  • Vingopoulos F, Cui Y, Katz R, et al. Widefield swept-source OCTA in Vogt-Koyanagi- Harada disease. Ophthalmic Surg Lasers Imaging Retina. 2020:51. doi:10.3928/23258160-20200702-06.
  • Qian Y, Yang J, Liang A, Zhao C, Gao F, Zhang M. Widefield Swept-Source optical coherence tomography angiography assessment of choroidal changes in Vogt-Koyanagi-Harada disease. Front Med. 2021;8. doi:10.3389/fmed.2021.698644.
  • Ye X, Zhang H, Xiao P, et al. Microvasculature features of Vogt-Koyanagi-Harada disease revealed by widefield Swept-Source optical coherence tomography angiography. Front Med. 2021;8. doi:10.3389/fmed.2021.719593.
  • Brar M, Sharma M, Grewal SPS, Grewal DS. Treatment response in sympathetic ophthalmia as assessed by widefield OCT angiography. Ophthalmic Surg Lasers Imaging Retina. 2018;49. doi:10.3928/23258160-20180831-13.
  • Sekiryu T. Choroidal imaging using optical coherence tomography: techniques and interpretations. Jpn J Ophthalmol. 2022;66. doi:10.1007/s10384-022-00902-7.
  • Aggarwal K, Agarwal A, Sharma A, Sharma K, Gupta V. Detection of Type 1 choroidal neovascular membranes using optical coherence tomography angiography in tubercular posterior uveitis. Retina. 2019;39. doi:10.1097/IAE.0000000000002176.
  • Aggarwal K, Agarwal A, Gupta V. Type 2 choroidal neovascularization in a choroidal granuloma detected using swept-source optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina. 2018;49. doi:10.3928/23258160-20180628-11.
  • Arora A, Agarwal A, Bansal R, et al. Subretinal hyperreflective material (SHRM) as biomarker of activity in exudative and Non- exudative inflammatory choroidal neovascularization. Ocul Immunol Inflamm. 2021;1–8. doi:10.1080/09273948.2021.1980813.
  • Zicarelli F, Azzolini C, Cornish E, et al. Optical coherence tomography features of choroidal neovascularization and their correlation with age, gender, and underlying disease. Retina. 2021;5(1):41.doi:10.1097/IAE.0000000000002984.
  • Agarwal A, Invernizzi A, Singh RB, et al. An update on inflammatory choroidal neovascularization: epidemiology, multimodal imaging, and management. J Ophthalmic Inflamm Infect. 2018;8(1):8.doi:10.1186/s12348-018-0155-6.
  • Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7(1):7.doi:10.1038/srep42201.
  • Chu Z, Cheng Y, Zhang Q, et al. Quantification of choriocapillaris with phansalkar local thresholding: pitfalls to avoid. Am J Ophthalmol. 2020;213:161–176. doi:10.1016/j.ajo.2020.02.003.
  • Dabir S, Bhatt V, Bhatt D, et al. Need for manual segmentation in optical coherence tomography angiography of neovascular age-related macular degeneration. PLoS One. 2020;15. doi:10.1371/journal.pone.0244828.
  • Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol. 2017;62. doi:10.1016/j.survophthal.2017.05.006.
  • Singh SR, Vupparaboina KK, Goud A, Dansingani KK, Chhablani J. Choroidal imaging biomarkers. Surv Ophthalmol. 2019;64. doi:10.1016/j.survophthal.2018.11.002.
  • Corvi F, Corradetti G, Sadda SVR. Correlation between the Angiographic Choriocapillaris and the Structural Inner Choroid. Curr Eye Res. 2021;46. doi:10.1080/02713683.2020.1846756.
  • Preziosa C, Corvi F, Staurenghi G, Pellegrini M. Extended field imaging optical coherence tomography angiography for the study of retinal and choroidal changes after radiation therapy for choroidal melanoma: comparison with wide-field angiography. Retina. 2021;5(1):41. doi:10.1097/IAE.0000000000002848.
  • Scharf J, Corradetti G, Corvi F, Sadda S, Sarraf D. Optical coherence tomography angiography of the choriocapillaris in age-related macular degeneration. J Clin Med. 2021 10;10(4):751. doi:10.3390/jcm10040751.
  • Corvi F, Sadda SVR, Staurenghi G, Pellegrini M. Thresholding strategies to measure vessel density by optical coherence tomography angiography. Can J Ophthalmol. 2020;55. doi:10.1016/j.jcjo.2020.03.011.
  • Marchese A, Agarwal A, Moretti AG, et al. Advances in imaging of uveitis. Ther Adv Ophthalmol. 2020;12. doi:10.1177/2515841420917781.
  • Agarwal A, Mahajan S, Khairallah M, Mahendradas P, Gupta A, Gupta V. Multimodal imaging in ocular tuberculosis. Ocul Immunol Inflamm. 2017 25;25(1):134–145. doi:10.1080/09273948.2016.1231332.
  • Zhang X, Zuo C, Li M, Chen H, Huang S, Wen F. Spectral-domain optical coherence tomographic findings at each stage of punctate inner choroidopathy. Ophthalmology. 2013;120. doi:10.1016/j.ophtha.2013.05.012.
  • Nesper PL, Ong JX, Fawzi AA. Exploring the relationship between multilayered choroidal neovascularization and choriocapillaris flow deficits in AMD. Invest Opthalmol Vis Sci. 2021;62(3):12. doi:10.1167/iovs.62.3.12.