1,316
Views
0
CrossRef citations to date
0
Altmetric
Review

Ophthalmology Optical Coherence Tomography Databases for Artificial Intelligence Algorithm: A Review

, , , , , , , , , & show all
Pages 193-200 | Received 05 Oct 2023, Accepted 28 Dec 2023, Published online: 09 Feb 2024

REFERENCES

  • Benet D, Pellicer-Valero OJ. Artificial intelligence: the unstoppable revolution in ophthalmology Surv Ophthalmol. 2022;67(1):252–270. doi:10.1016/j.survophthal.2021.03.003.
  • Aumann S, Donner S, Fischer J, Müller F. Optical coherence tomography (OCT): principle and technical realization. In: Bille J, ed. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Cham (CH): Springer; 2019. doi:10.1007/978-3-030-16638-0.
  • Gabriele ML, Wollstein G, Ishikawa H, Kagemann L, Xu J, Folio LS, Schuman JS. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52(5):2425–2436. doi:10.1167/iovs.10-6312.
  • Wei X, Sui R. A review of machine learning algorithms for retinal cyst segmentation on optical coherence tomography Sensors. 2023;23(6):3144. doi:10.3390/s23063144.
  • Ting DSW, Peng L, Varadarajan AV, Keane PA, Burlina PM, Chiang MF, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res. 2019;72:100759. doi:10.1016/j.preteyeres.2019.04.003.
  • Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–29. doi:10.1038/s41591-018-0316-z.
  • Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–175. doi:10.1136/bjophthalmol-2018-313173.
  • Kim YD, Noh KJ, Byun SJ, Lee S, Kim T, Sunwoo L, et al. Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images. Sci Rep. 2020;10(1):4623. doi:10.1038/s41598-020-61519-9.
  • Gichoya JW, Banerjee I, Bhimireddy AR, Burns JL, Celi LA, Chen L-C, et al. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health. 2022;4(6):e406–e414. doi:10.1016/s2589-7500(22)00063-2.
  • Moraes G, Fu DJ, Wilson M, Khalid H, Wagner SK, Korot E, et al. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology. 2021;128(5):693–705. doi:10.1016/j.ophtha.2020.09.025.
  • Anegondi N, Gao SS, Steffen V, Spaide RF, Sadda SR, Holz FG, et al. Deep learning to predict geographic atrophy area and growth rate from multimodal imaging. Ophthalmol Retina. 2023;7(3):243–252. doi:10.1016/j.oret.2022.08.018.
  • Balaskas K, Glinton S, Keenan TDL, Faes L, Liefers B, Zhang G, et al. Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning. Sci Rep. 2022;12(1):15565. doi:10.1038/s41598-022-19413-z.
  • HealthLeaders. Root of some health disparities may be buried in technology. [cited 25 Aug 2023]. Available: https://www.healthleadersmedia.com/technology/root-some-health-disparities-may-be-buried-technology
  • Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data JAMA Intern Med. 2018;178(11):1544–1547. doi:10.1001/jamainternmed.2018.3763.
  • Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3(1):1–9. doi:10.1038/sdata.2016.18.
  • Nakayama LF, Matos J, Quion J, Novaes F, Mitchell WG, Mwavu R, et al. Unmasking Biases and Navigating Pitfalls in the Ophthalmic Artificial Intelligence Lifecycle: A Review. 2023. doi:10.48550/ARXIV.2310.04997.
  • IACL. https://iacl.ece.jhu.edu/Internet. [cited 1 Aug 2023]. Available: https://iacl.ece.jhu.edu/index.php?title=Main_Page
  • Moraes G, Fu DJ, Wilson M, Khalid H, Wagner SK, Korot E, et al. Quantitative analysis of optical coherence tomography for neovascular age-related macular degeneration using deep learning. Dryad. 2020. doi:10.5061/dryad.2rbnzs7m4.
  • Farsiu Ophthalmology. 2013. [cited 1 Aug 2023]. Available: https://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm
  • Youssef A, Pencina M, Thakur A, Zhu T, Clifton D, Shah NH. External validation of AI models in health should be replaced with recurring local validation Nat Med. 2023;29(11):2686–2687. doi:10.1038/s41591-023-02540-z.
  • GeoPandas. [cited 2 Sep 2023]. Available: https://geopandas.org/en/stable/about/citing.html
  • Kermany D. Large dataset of labeled optical coherence tomography (OCT) and chest X-Ray images. Mendeley. 2018. doi:10.17632/RSCBJBR9SJ.3.
  • Raja H. Data on OCT and Fundus Images. Mendeley. 2020. doi:10.17632/2RNNZ5NZ74.2.
  • Chiu dataset. https://people.duke.edu/Internet. [cited 18 Dec 2023]. Available: http://www.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm
  • Optical coherence tomography image retinal database. [cited 18 Dec 2023]. Available: https://borealisdata.ca/dataverse/OCTID
  • Fang dataset. In: https://people.duke.edu/Internet]. [cited 18 Dec 2023]. Available: https://people.duke.edu/~sf59/Fang_TMI_2013.htm
  • Girkin CA, McGwin G Jr, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, et al. Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography. Ophthalmology. 2011;118(12):2403–2408. doi:10.1016/j.ophtha.2011.06.013.
  • Antar H, Tsikata E, Ratanawongphaibul K, Zhang J, Shieh E, Lee R, et al. Analysis of Neuroretinal Rim by age, race, and sex using high-density 3-dimensional spectral-domain optical coherence tomography. J Glaucoma. 2019;28(11):979–988. doi:10.1097/IJG.0000000000001381.
  • Lee H, Proudlock FA, Gottlob I. Pediatric optical coherence tomography in clinical practice—recent progress Invest Ophthalmol Vis Sci. 2016;57(9):OCT69–OCT79. doi:10.1167/iovs.15-18825.
  • Yılmaz H, Köylü MT, Yılmaz AC, Durukan AH, Uysal Y. Agreement between standard optical coherence tomography and optical coherence tomography-based angiography in estimating retinal nerve fiber Layer thickness Turk J Ophthalmol. 2020;50(5):264–270. doi:10.4274/tjo.galenos.2020.18488.
  • Han IC, Jaffe GJ. Comparison of spectral- and time-domain optical coherence tomography for retinal thickness measurements in healthy and Diseased Eyes Am J Ophthalmol. 2009;147(5):847–858.e1. doi:10.1016/j.ajo.2008.11.019.