1,724
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Advanced Gravity Concentration of Fine Particles: A Review

&

References

  • Alp, I., Celep, O., Deveci, H., and Vicil, M., 2008, “Recovery of gold from a free-milling ore by centrifugal gravity separator.” Iranian Journal of Science & Technology, Transaction B, Engineering, 32(B1). pp. 67–71.
  • Amariei, D., Michaud, D., Paquet, G., and Lindsay, M., 2014, “The use of reflux classifier for iron ores: assessment of fine particles recovery at pilot scale.” Minerals Engineering, 62. pp. 66–73.
  • Ancia, Ph., Frenay, J., and Dandois, Ph., Comparison of Knelson and Falcon centrifugal separators, Proc. Innovation in Physical Separation Technologies (Richard Mozley Memorial Symposium), 4–5 June, 1997, Falmouth, Cornwall, UK.
  • Angadi, S. I., Eswaraiah, C., Jeon, H. S., Mishra, B. K., and Miller, J. D., 2017, “Selection of gravity separators for the beneficiation of the Uljin tin ore.” Mineral Processing and Extractive Metallurgy Review, 38(1). pp. 54–61.
  • Aslan, N., 2007, “Modelling and optimization of multi gravity separator to produce celestite concentrate.” Powder Technology, 174. pp. 127–133.
  • Aslan, N., 2008, “Multi-objective optimization of some process parameters of a multi-gravity separator for chromite concentration.” Separation and Purification Technology, 64. pp. 237–241.
  • Bell, R. A., Witt, P. J., Easton, A. K., and Schwarz, M. P., Comparison of representations for particle-particle interactions in gas-solid fluidized bed, Proc. International Conference on CFD in Mineral and Metal Processing and Power Generation, 1997, CSIRO, Australia, pp. 361–368.
  • Beniuk, V. G., Vadeikis, C. A., and Enraght-Moony, J. N., 1994, “Centrifugal jigging of gravity concentrate and tailings at Renison Limited.” Minerals Engineering, 7(5–6). pp. 577–589.
  • Bruint, S., 1969, “Velocity distributions in a liquid film flowing over a rotating conical surface.” Chemical Engineering Science, 24. pp. 1647–1654.
  • Bu, X., Ni, C., Xie, G., Peng, Y., Ge, L., and Sha, J., 2017, “Preliminary study on foreign slime for the gravity separation of coarse coal particles in a teeter bed separator.” International Journal of Mineral Processing, 160. pp. 76–80.
  • Buonvino, M., A study of the falcon concentrator, PhD dissertation, 1993, McGill University, Montreal, Canada.
  • Burt, R. O., 1984, Gravity Concentration Technology, New York, NY: Elsevier Science Publishers.
  • Burt, R. O., 1999, “The role gravity concentration in modern processing plants.” Minerals Engineering, 12(11). pp. 1291–1300.
  • Burt, R. O., Korinek, G., Young, S. R., and Deveau, C., 1995, “Ultrafine tantalum recovery strategies.” Minerals Engineering, 8(8). pp. 859–870.
  • Chalavadi, G., and Das, A., 2015, “Study of the mechanism of fine coal beneficiation in air table.” Fuel, 36. pp. 10–27.
  • Chalavadi, G., Singh, R. K., and Das, A., 2016b, “Processing of coal fines using air fluidization in an air table.” International Journal of Mineral Processing, 149. pp. 9–17.
  • Chalavadi, G., Singh, R. K., Sharma, M., and Das, A., 2015, “Recovery of combustibles from fine coal through controlled fluidization over inclined deck.” Separation Science and Technology, 50(13). pp. 2032–2040.
  • Chalavadi, G., Singh, R. K., Sharma, M., Singh, R., and Das, A., 2016a, “Development of a generalized strategy for dry beneficiation of fine coal over a vibrating deck.” International Journal of Coal Preparation and Utilization, 36. pp. 10–27.
  • Chatterjee, A., 1998, “Role of particle size in mineral processing at Tata Steel.” International Journal of Mineral Processing, 53(1–2). pp. 1–14.
  • Chaurasia, R. C., and Suresh, N., 2017a, “Beneficiation of iron ore fines by multi-gravity separator (MGS) using optimization studies.” Particulate Science and Technology, 35(1). pp. 45–53.
  • Chaurasia, R. C., and Suresh, N., 2017b, “Optimization studies on a multi-gravity separator treating ultrafine coal.” International Journal of Coal Preparation and Utilization, 37(4). pp. 195–212.
  • Chen, Q., and Yang, Y., 2003, “Development of dry beneficiation of coal in China.” Coal Preparation, 23. pp. 3–12.
  • Cho, H., and Kim, J., 2004, “Recovery of carbon from Korean anthracite by hindered-settling separation.” Resources Processing, 51. pp. 52–55.
  • Çiçek, T., and Cöcen, I., 2002, “Applicability of Mozley multigravity separator (MGS) to fine chromite tailings of Turkish chromite concentrating plants.” Mineral Engineering, 15. pp. 91–93.
  • Clemente, D., Newling, P., Botelho De Sousa, A., LeJune, G., Barber, S. P., and Tucker, P., 1993, “Reprocessing slimes tailings from a tungsten mine.” Minerals Engineering, 6(8–10). pp. 831–839.
  • Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops and Particles, New York, NY: Academic Press.
  • Concha, F., and Almendra, E. R., 1979, “Settling velocities of particulate systems - 2, Settling velocities of suspensions of spherical particles.” International Journal of Mineral Processing, 6. pp. 31–41.
  • Coulter, T., and Subasinghe, G. K. N., 2005, “A mechanistic approach to modeling Knelson concentrators.” Minerals Engineering, 18. pp. 9–17.
  • Das, A., Sarkar, B., and Mehrotra, S. P., 2009a, “Prediction of separation performance of floatex density separator for processing of fine coal particles.” International Journal of Mineral Processing, 91(1–2). pp. 41–49.
  • Das, A., Vidyadhar, A., Mehrotra, S. P., and Novel, A., 2009b, “Flowsheet for the recovery of metal values from waste printed circuit boards.” Resources, Conservation and Recycling, 53. pp. 464–469.
  • Davis, R. H., Zhang, X., and Agarwala, J. P., 1989, “Particle classification for dilute suspensions using an inclined settler.” Industrial & Engineering Chemistry Research, 28(6). pp. 785–793.
  • Dodbiba, G., Shibayama, A., Miyazaki, T., and Fujita, T., 2003, “Separation performance of PVC and PP plastic mixture using air table.” Physical Separation in Science and Engineering, 12(2). pp. 71–86.
  • Drummond, R., Nicol, S., and Swanson, A., 2002, “Teeter bed separators – the Australian experience.” The Journal of the South African Institute of Mining and Metallurgy, 102(7). pp. 385–392.
  • Dunn, P. L., Stewart, S. O., Kohmuench, J. N., and Cadena, C. A., A hydraulic classifier evaluation: upgrading heavy mineral concentrates, Preprint 00-155, SME Annual Meeting, February 28–March 1, 2000, Salt Lake City, Utah.
  • Dwari, R. K., and Rao, K. H., 2007, “Dry beneficiation of coal – a review.” Mineral Processing and Extractive Metallurgy Review, 28(3). pp. 177–234.
  • Epstein, N., 2005, “Teetering.” Powder Technology, 151(1–3). pp. 2–14.
  • Falconer, A., 2003, “Gravity separations: old technique/new methods.” Physical Separations in Science and Technology, 12(1). pp. 31–48.
  • Ferrara, G., A process of centrifugal separation using a rotating tube, Proc. 5th International Congress, Institute of Mining and Metallurgy, 1960, London.
  • Fraser, T., and Yancey, H. F., 1926, “Artificial storm of air-sand floats coal on its upper surface, leaving refuse to sink.” Coal Age, 29, pp. 325–327
  • Galvin, K. P., Callen, A. M., and Spear, S., 2010, “Gravity separation of coarse particles using the reflux classifier.” Minerals Engineering, 23. pp. 339–349.
  • Galvin, K. P., Doroodchi, E., Callen, A. M., Lambert, N., and Pratten, S. J., 2002, “Pilot plant trial of the reflux classifier.” Minerals Engineering, 15. pp. 19–25.
  • Galvin, K. P., Pratten, S. J., and Nguyentranlam, G., 1999b, “A generalized empirical description for particle slip velocities in liquid fluidized beds.” Chemical Engineering Science, 54. pp. 1045–1052.
  • Galvin, K. P., Pratten, S. J., and Nicol, S. K., 1999a, “Dense medium separation using a teetered bed separator.” Minerals Engineering, 12. pp. 1059–1081.
  • Galvin, K. P., Zhou, J., Price, A. J., Agrwal, P., and Iveson, S. M., 2016, “Single-stage recovery and concentration of mineral sands using a REFLUX™ classifier.” Minerals Engineering, 93. pp. 32–40.
  • Garside, J., and Al-Dibouni, M. R., 1979, “Particle mixing and classification in liquid fluidized beds.” Transactions of the Institution of Chemical Engineers, 57. pp. 95–103.
  • Ghaffari, A., and Farzanegan, A., 2017a, “An investigation on laboratory Knelson Concentrator separation performance: part 1: retained mass modelling.” Minerals Engineering, 112. pp. 57–67.
  • Ghaffari, A., and Farzanegan, A., 2017b, “An investigation on laboratory Knelson Concentrator separation performance: part 2: Two-component feed separation modelling.” Minerals Engineering, 112. pp. 114–124.
  • Goktepe, F., 2005, “Treatment of lead mine waste by a Mozley multi-gravity separator (MGS).” Journal of Environmental Management, 76. pp. 277–281.
  • Greenwood, M., Langlois, R., and Waters, K. E., 2013, “The potential for dry processing using a Knelson Concentrator.” Minerals Engineering, 45. pp. 44–46.
  • Hartman, M., Havlin, V., Trnka, O., and Carsky, M., 1989, “Predicting the free fall velocities of spheres.” Chemical Engineering Science, 44(8). pp. 1743–1745.
  • He, J., Tan, M., Zhao, Y., Zhu, R., and Duan, C., 2016, “Density-based segregation/separation performances of dense medium gas–solid fluidized bed separator (DMFBS) for coal cleaning and upgrading.” Journal of the Taiwan Institute of Chemical Engineers, 59. pp. 252–261.
  • Holtham, P. N., 1992, “Particle transport in gravity concentrators and the bagnold effect.” Minerals Engineering, 5(2). pp. 205-221 doi:10.1016/0892-6875(92)90043-9
  • Honaker, H. Q., and Mondal, K., 1999, “Dynamic development of fine coal separations in hindered-bed classifier.” Coal Preparation, 21. pp. 211-232.
  • Honaker, R., Das, A., and Nombe, M., 2005, “Improving the separation efficiency of the Knelson concentrator using air injection.” Coal Preparation, 25. pp. 99–116.
  • Honaker, R., Wang, D., and Ho, K., 1996, “Application of Falcon concentrator for fine coal concentration.” Minerals Engineering, 9(11). pp. 1143–1156.
  • Honaker, R. Q., 1998, “High capacity fine coal cleaning using enhanced gravity concentrator.” Minerals Engineering, 11(12). pp. 1191–1199.
  • Honaker, R. Q., and Das, A., 2004, “Ultrafine coal cleaning using a centrifugal fluidized-bed separator.” Coal Preparation, 24. pp. 1–18.
  • Honaker, R. Q., Luttrell, G. H., Bratton, R., and Patil, D. P., 2006, “Improving mine profitability using dry deshaling technologies.” CPSA Journal, 5(2). pp. 21–26.
  • Honaker, R. Q., and Mondal, K., 2000, “Dynamic modelling of fine coal separation in a hindered bed classifier.” Coal Preparation, 21. pp. 211–232.
  • Honaker, R. Q., Saracoglu, M., Thompson, E., Bratton, R., Luttrell, G. H., and Richardson, V., 2008, “Upgrading coal using a pneumatic density based separator.” International Journal of Coal Preparation and Utilization, 28. pp. 51–67.
  • Honaker, R. Q., Singh, N., and Govindarajan, B., 2000, “Application of dense medium in an enhanced gravity separator for fine coal cleaning.” Minerals Engineering, 13(4). pp. 415–427.
  • Horn, A., and Wellsted, M., Innovative beneficiation of iron ore with Allflux two-stage fluidized bed classifiers and Gaustec wet high intensity magnetic separators, Iron Ore - 2011 conference, Perth, Australia, 2011, pp. 437–443.
  • Houwelingen, J. A. V., and Jong, T. K. P. R., 2004, “Dry cleaning of coal: review, fundamentals and opportunities.” Geologica Belgica, 7. pp. 335–343.
  • Huang, L., Upgrading of gold gravity concentrates – a study of Knelson concentrator, D.Phil. Dissertation, 1996, Mining and Metallurgical Engineering, McGill University, Montreal, Canada.
  • Hunt, M. L., Zenit, R., Campbell, C. S., and Brennen, C. E., 2002, “Revisiting the 1954 suspension experiments of R.A. Bagnold.” Journal of Fluid Mechanics, 452. pp. 1–24.
  • Iohn, P., 1971, “Fluidised bed heavy medium separation – a modern dry separation procedure.” Aufbereitung-Technik, 3. pp. 140–146.
  • Jones, T. A., Efficient enhanced gravity recovery of Zircon using the Kelsey centrifugal jig, Proc. DMS and Gravity Concentration Operations and Technology in South Africa, South Africa, 2006, pp. 87–108.
  • Kapure, G., Kari, C., Rao, S. M., and Rao, N. D., 2007, “The feasibility of a slip velocity model for predicting the enrichment of chromite in a Floatex density separator.” International Journal of Mineral Processing, 82(2). pp. 86–95.
  • Kari, C., Kapure, G., Rao, S. M., and Rao, N. D., 2006, “Predicitng the chromite mineral upgradation in Floatex density separator using hindered settling models.” Iron and Steel Institute of Japan International, 46(7). pp. 966–973.
  • Killmeyer, R. P., and Deurbrouck, A. W., Performance Characteristics of Coal Washing Equipment - Air Tables, Report No.PMTC-6(79), April, Washington, DC: U.S. Department of Energy, Division of Fossil Fuel Extraction, Mining Research and Development, 1979.
  • Kim, B. H., and Klima, M. S., 1998, “Density separation of fine, high density particles in a water-only cyclone.” Minerals and Metallurgical Processing, 15(4). pp. 26–31.
  • Knelson, B. V., Centrifugal concentration of precious metals, Proc. 2nd International Conference on Gold Mining, 1988, Vancouver, Canada.
  • Kohmuench, J. N., Mankosa, M. J., and Honaker, R. Q., 2003, Advances in teeter-bed technology for coal cleaning applications, In Advances in Gravity Concentration, (R. Q. Honaker and W. R. Forrest, Eds.), Colorado: SME Inc. publications, pp. 115.
  • Kökkılıç, O., Langlois, R., and Waters, K. E., 2015, “A design of experiments investigation into dry separation using a Knelson Concentrator.” Minerals Engineering, 72. pp. 73–86.
  • Koppalkar, S., Effect of operating variables in a Knelson concentrator, PhD dissertation, 2009, McGill University, Montreal, Canada.
  • Kroll-Rabotin, J.-S., Bourgeois, F., and Climent, É., 2010, “Fluid dynamics based modelling of the Falcon concentrator for ultrafine particle beneficiation.” Minerals Engineering, 23. pp. 313–320.
  • Kroll-Rabotin, J.-S., Bourgeois, F., and Climent, É., 2012, “Experimental validation of a fluid dynamics based model of the UF Falcon concentrator in the ultrafine range.” Separation and Purification Technology, 92. pp. 129–135.
  • Laleh, S., Movahedirad, S., Sarbanha, A. A., and Sobati, M. A., 2017, “A new hydraulic particle classifier: experimental investigation and modeling.” Separation and Purification Technology, 174. pp. 12–21.
  • Langrish, T. A. G., Makarytchev, S. V., Fletcher, D. F., and Prince, R. G. H., 2003, Transactions of Institution of Chemical Engineers, 81(Part A). pp. 122–130.
  • Laplante, A. R., A comparative study of two centrifugal concentrators, Proc. 25th Annual Meeting of the Canadian Mineral Processors, 1993, Ottawa, Canada, Paper 5.
  • Laplante, A. R., and Shu, Y. The use of a laboratory centrifugal separator to study gravity recovery in industrial circuits. Proc. 24th Annual Meeting of the Canadian Mineral Processors, 1992, Ottawa, Paper 12.
  • Laplante, A. R., Vincent, F., and Luinstra, W. F., A laboratory procedure to determine the amount of gravity recoverable gold – a case study at Hemlo Gold Mines, Proc. 28th Annual Meeting of Canadian Mineral Processors, 1996, Ottawa, Canada, Paper 6, pp. 69–82.
  • Laskovski, D., Duncan, P., Stevenson, P., Zhou, J., and Galvin, K. P., 2006, “Segregation of hydraulically suspended particles in inclined channels.” Chemical Engineering Science, 61. pp. 7269–7278.
  • Lockett, M. J., and Al-Habbooby, H. M., 1973, “Differential settling by size of two particle species in a liquid.” Transactions of the Institute of Chemical Engineers, 51. pp. 281–292.
  • Lockett, M. J., and Al-Habbooby, H. M., 1974, “Relative particle velocities in two species settling.” Powder Technology, 10. pp. 67–71.
  • Luttrell, G. H., Honaker, R. Q., and Phillips, D. I., “Enhanced gravity separators: new alternatives for fine coal cleaning,” 12th Int. Coal Prep. Conf., Lexington, KT, 1995, pp. 281–292.
  • Luttrell, G. H., Westerfield, T. C., Kohmuench, J. N., Mikkola, K. A., and Oswald, G., 2006, “Development of high-efficiency hydraulic separators.” Minerals and Metallurgical Processing, 23(1). pp. 33–39.
  • MacTaggart, R. S., Law, D. H., Masliyah, J. H., and Nandkumar, K., 1988, “Gravity separation of concentrated bidisperse suspensions in inclined plate settlers.” International Journal of Multiphase Flow, 14(4). pp. 519–532.
  • Majumder, A. K., and Barnwal, J. P., 2006, “Modelling of enhanced gravity concentrator-present status.” Mineral Processing and Extractive Metallurgy Review, 27. pp. 61–86.
  • Majumder, A. K., and Barnwal, J. P., 2011, “Processing of fine coal in a water-only cyclone.” Fuel, 90. pp. 834–837.
  • Makarytchev, S. V., Xue, E., Langrish, T. A. G., and Prince, R. G. H., 1997, “On modelling fluid flow over a rotating conical surface.” Chemical Engineering Science, 52(6). pp. 1055–1057.
  • Marion, C., Williams, H., Langlois, R., Kökkılıç, O., Coelho, F., Awais, M., Rowson, N. A., and Waters, K. E., 2017, “The potential for dense medium separation of mineral fines using a laboratory Falcon Concentrator.” Minerals Engineering, 105. pp. 7–9.
  • Masliyah, J. H., 1979, “Hindered settling in multi-species particle system.” Chemical Engineering Science, 34. pp. 1166–1168.
  • Meza S, L. A., Hartmann, W., and Escobar, C. A., Recovery of placer gold using the Knelson concentrator, Proc. Innovations in Mineral Processing Conference, June 6–8, 1994, Sudbury, Canada, pp. 339–347.
  • Morley, C., January 1992, Cassiterite Recovery with Falcon Concentrator, Memorandum to B. Lewis, Canada: Rio Kemptville Tin Company.
  • Murthy, N., and Basavaraj, K., Assessing the performance of a floatex density separator for the recovery of iron from low grade Australian iron ore fines – a case study, Proc. XXVI International Mineral Processing Congress, 2012, New Delhi, India, Paper No. 572.
  • Napier-Munn, T. J., 1997, “Invention and innovation in mineral processing.” Minerals Engineering, 10(8). pp. 757–773.
  • Nguyentranlam, G., and Galvin, K. P., 2001, “Particle classification in the reflux classifier.” Minerals Engineering, 14. pp. 1081–1091.
  • Orupold, T., Starr, D., and Kenefick, T., 2014, “The lamella high shear rate reflux classifier.” The Journal of the South African Institute of Mining and Metallurgy, 114. pp. 511–518.
  • Özbakir, O., Koltka, S., and Sabah, E., 2017, “Modeling and optimization of fine coal beneficiation by hydrocyclone and multi-gravity separation to produce fine lignite clean coal.” Particulate Science and Technology, 35(6). pp. 712-722. DOI: 10.1080/02726351.2016.1194351.
  • Ozbayoglu, G., and Atalay, M. U., 2000, “Beneficiation of bastnaesite by a multi gravity separator.” Journal of Alloys and Compounds, 303–304. pp. 520–523.
  • Ozcan, O., and Celik, I. B., 2016, “Beneficiation routes for upgrading iron ore tailings with a teetered bed separator.” Separation Science and Technology, 51(17). pp. 2844–2855.
  • Ozcan, O., and Ergun, S. L., 2017, “Performance of teetered bed separator for non-coal applications.” Separation Science and Technology, 52(8). pp. 1486–1495.
  • Patil, D. P., Bhaskar, K. U., Jakhu, M. R., and Rao, T. C., 1997, “Removal of graphite from lead rougher concentrate using water only cyclones.” International Journal of Mineral Processing, 49. pp. 87–96.
  • Patil, D. P., and Parekh, B. K., 2011, “Beneficiation of fine coal using the air table.” International Journal of Coal Preparation and Utilization, 31(3–4). pp. 203–222.
  • Patwardhan, V. S., and Tien, C., 1985, “Sedimentation and liquid fluidization of solid particles of different sizes and densities.” Chemical Engineering Science, 40(7). pp. 1051–1060.
  • Piennar, P. C., Allflux twin stage hydrosizer test work on South African hard coals at Middleburg mine to ensure recovery of a PSS export product from the −0.5 mm fine coal, Coal Preparation Conference, Witbank, South Africa, 07 March, 2000.
  • Richards, R. G., and Palmer, M. K., 1997, “High capacity gravity separators a review of current status.” Minerals Engineering, 10(9). pp. 973–982.
  • Richardson, J. F., and Zaki, W. N., 1954, “Sedimentation and Fluidization: part I.” Transactions of the Institution of Chemical Engineers, 32. pp. 35–53.
  • Rowe, P., 1987, “A convenient empirical equation for estimation of the Richardson-Zaki exponent.” Chemical Engineering Science, 42. pp. 2795–2796.
  • Saffman, P., 1965, “The lift on a small sphere in a slow shear flow.” Journal of Fluid Mechanics, 22. pp. 385–400.
  • Sah, R., Vidyadhar, R., and Das, A., 2017, “Study of cut point density and process performance of floatex density separator in fine coal cleaning.” Particulate Science and Technology, 39(2). pp. 239–246.
  • Sahu, A. K., Biswal, S. K., and Parida, A., 2009, “Development of air dense medium fluidized bed technology for dry beneficiation of coal – A review.” International Journal of Coal Preparation and Utilization, 29(4). pp. 216–241.
  • Sahu, A. K., Biswal, S. K., Parida, A., Reddy, P. S. R., and Misra, V. N., 2005, “A study of dynamic stability of medium in fluidized bed separator.” Transactions of Indian Institute of Metals, 56(1). pp. 103–107.
  • Sahu, A. K., Tripathy, A., Biswal, S. K., and Parida, A., 2011, “Stability study of an air dense medium fluidized bed separator for beneficiation of high ash Indian coal.” International Journal of Coal Preparation and Utilization, 31(3–4). pp. 127–148.
  • Sarkar, B., and Das, A., 2010, “A comparative study of slip velocity models for the prediction of performance of floatex density separator.” International Journal of Mineral Processing, 94(1–2). pp. 20–27.
  • Sarkar, B., Das, A., and Mehrotra, S. P., 2008b, “Study of separation features in floatex density separator for cleaning fine coal.” International Journal of Mineral Processing, 86(1–4). pp. 40–49.
  • Sarkar, B., Das, A., Roy, S., and Rai, S. K., 2008a, “In depth analysis of alumina removal from iron ore fines using Teetered Bed Gravity Separator.” Mineral Processing and Extractive Metallurgy (Trans IMM C), 117(1). pp. 48–55.
  • Sen, G. A., 2016, “Application of full factorial experimental design and response surface methodology for chromite beneficiation by Knelson concentrator.” Minerals, 6(1). pp. 5.
  • Singh, R., Bhattacharyya, K. K., and Maulik, S. C., Gravity concentration of fines and ultrafines, Proceedings: PROF-97, 1997, 40–56.
  • Singh, R. K., and Das, A., 2013, “Analysis of separation response of Kelsey centrifugal jig in processing fine coal.” Fuel Processing Technology, 115. pp. 71–78.
  • Stotts, W. F., Bland, A. E., and Kuhn, J. K., Performance Evaluation of The Federal Mines Air Separation Plant at Elkhorn City, Kentucky. Technical Report KECL, February, 1987, 87–161. Lexington, KY: Kentucky Energy Cabinet Laboratory.
  • Suresh, N., Vanangamudi, M., and Rao, T. C., 1996, “A performance model for water-only gravity separators for treating coal.” Fuel, 75(7). pp. 851–854.
  • Syamlal, M., Multiphase hydrodynamics of gas-solids flow, PhD dissertation, 1985, Illinois Institute of Technology.
  • Tozsin, G., Acar, C., and Sivrikaya, O., 2016, “Evaluation of a Turkish lignite coal cleaning by conventional and enhanced gravity separation techniques.” International Journal of Coal Preparation and Utilization. DOI: 10.1080/19392699.2016.1209191.
  • Traore, A., Conil, P., Houot, R., and Save, M., 1995, “An evaluation of the Mozley MGS for fine particle gravity separation.” Minerals Engineering, 8(7). pp. 767–778.
  • Tripathy, A., Bagchi, S., Biswal, S. K., and Meikap, B. C., 2017, “Study of particle hydrodynamics and misplacement in liquid–solid fluidized bed separator.” Chemical Engineering Research and Design, 117. pp. 520–532.
  • Tripathy, S. K., Bhoja, S. K., Kumar, C. R., and Suresh, N., 2015, “A short review on hydraulic classification and its development in mineral industry.” Powder Technology, 270. pp. 205–220.
  • Tripathy, S. K., Murthy, Y. R., and Singh, V., 2013, “Characterization and separation studies of Indian chromite beneficiation plant tailing.” International Journal of Mineral Processing, 122. pp. 47–53.
  • Tucker, P., 1995, “Modelling the Kelsey centrifugal jig.” Minerals Engineering, 8(3). pp. 333–336.
  • Uslu, T., Sahinoglu, E., and Yavuz, M., 2012, “Desulphurization and deashing of oxidized fine coal by Knelson concentrator.” Fuel Processing Technology, 101. pp. 94–100.
  • Van Der Wielen, L. A. M., Van Dam, M. H. H., and Luyben, K. Ch. A. M., 1996, “On the relative motion of particle in a swarm of different particles.” Chemical Engineering Science, 51. pp. 995-1008
  • Visman, J., Bulk processing of fine materials by compound water cyclones, CIM Bulletin, 59/647. 333–346.
  • Walsh, D. E., Evaluation of the four inch compound water cyclone as a fine gold concentrator using radiotracer techniques, MIRL Report no. 70, Mineral Industry Research Laboratory, University of Alaska-Fairbanks, 1985.
  • Wei, L., and Sun, M., 2016, “Numerical studies of the influence of particles’ size distribution characteristics on the gravity separation performance of liquid-solid fluidized bed separator.” International Journal of Mineral Processing, 157. pp. 111–119.
  • Westerfield, T. C., Evaluation of hydraulic separator applications in the coal and mineral industries, MS Thesis, Virginia Polytechnic Institute and State University, Mining and Minerals Engineering, 2004.
  • Weyher, L. H. E., and Lovell, H. L., 1969, “Hydrocyclone washing of fine coal.” Transactions AIME, 244. pp. 191–203.
  • Williams, D., Dickson, M. A., and Connely, D., Technical report on hematite mineral resource, Ularring Hematite Project, Macarthur Minerals Limited, http://macarthurminerals.com/wp-content/uploads/2011/10/NI43-101-Technical-Report-Hematite-Mineral-Resource-June-29-2012.pdf.
  • Wills, B. A., 1997, Mineral Processing Technology, 6th ed., Oxford, UK: Butterworth-Heinemann.
  • Wright, A., May 1985, “Air-table preparation plant adds heavy medium circuit.” Coal Age, 90. pp. 70–73.
  • Yu, X., Luo, Z., Li, H., Yang, X., Zhou, E., Jiang, H., Wu, J., Song, S., and Cai, L., 2016, “Effect of vibration on the separation efficiency of high-sulfur coal in a compound dry separator.” International Journal of Mineral Processing, 157. pp. 195–204.
  • Zhang, B., Recovering gold from high density gangues with Knelson concentrators, M. Eng. Thesis, 1998, McGill University.
  • Zhang, L., Liu, W., and Zhang, Y., 2016, “Calculation of teeter bed height of teeter bed separator based on jet theory.” Powder Technology, 295. pp. 225–233.
  • Zhenfu, L., and Qingru, C., 2001, “Dry beneficiation of coal with an air dense-medium fluidized bed.” International Journal of Mineral Processing, 63. pp. 167–175.
  • Zhenfu, L., Qingru, C., and Yaomin, Z., 2002, “Dry beneficiation of coarse coal using an air dense medium fluidized bed (ADMFB).” Coal Preparation, 22. pp. 57–64.
  • Zhou, M., Kökkılıç, O., Langlois, R., and Waters, K. E., 2016, “Size-by-size analysis of dry gravity separation using a 3-in.” Knelson Concentrator, Minerals Engineering, 91. pp. 42–54.
  • Zhu, X., Tao, Y., Sun, Q., and Man, Z., 2017a, “The low efficiency of lignite separation by an enhanced gravity concentrator.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(8). pp. 835–842.
  • Zhu, X., Tao, Y., Sun, Q., and Man, Z., 2017b, “Enrichment and migration regularity of fine coal particles in enhanced gravity concentrator.” International Journal of Mineral Processing, 163. pp. 48–54.
  • Zigrang, D. J., and Sylvester, N. D., 1981, “An explicit equation for particle settling velocities in solid liquid systems.” AIChE Journal, 27(6). pp. 1043–1044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.