849
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Acidophilic bioleaching: A Review on the Process and Effect of Organic–inorganic Reagents and Materials on its Efficiency

, , , , , ORCID Icon & show all

References

  • Abdollahi, H., Noaparast, M., Shafaei, S. Z., Manafi, Z., Muñoz, J. A., and Tuovinen, O. H., 2015, “Silver-catalyzed bioleaching of copper, molybdenum and rhenium from a chalcopyrite–molybdenite concentrate.” International Biodeterioration & Biodegradation, 104. pp. 194–200.
  • Abdollahi, H., Shafaei, S. Z., Noaparast, M., and Manafi, Z., 2017, “Mixed moderate thermophilic bioleaching of Cu, Mo and Re from molybdenite concentrate: effects of silver ion, medium and energy sources.” International Journal of Mining & Geo-Engineering, 51(2). pp. 151–159.
  • Abdollahi, H., Shafaei, S. Z., Noaparast, M., Manafi, Z., Niemelä, S. I., and Tuovinen, O. H., 2014, “Mesophilic and thermophilic bioleaching of copper from a chalcopyrite-containing molybdenite concentrate.” International Journal of Mineral Processing, 128. pp. 25–32.
  • Abraitis, P., Pattrick, R., Kelsall, G., and Vaughan, D., 2004, “Acid leaching and dissolution of major sulphide ore minerals: processes and galvanic effects in complex systems.” Mineralogical Magazine, 68(2). pp. 343–351.
  • Adekola, F. A., Atata, R. F., Ahmed, R. N., and Panda, S., 2011, “Bioleaching of Zn (II) and Pb (II) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria.” Transactions of Nonferrous Metals Society of China, 21(11). pp. 2535–2541.
  • Ageeva, S., Kondrat’eva, T., and Karavaiko, G., 2001, “Phenotypic characteristics of thiobacillus ferrooxidans strains.” Microbiology, 70(2). pp. 186–194.
  • Aghamirian, M., and Yen, W., 2005, “Mechanisms of galvanic interactions between gold and sulfide minerals in cyanide solution.” Minerals Engineering, 18(4). pp. 393–407.
  • Ahmadi, A., Ranjbar, M., and Schaffie, M., 2013, “Effect of activated carbon addition on the conventional and electrochemical bioleaching of chalcopyrite concentrates.” Geomicrobiology Journal, 30(3). pp. 237–244.
  • Ahmadi, A., Schaffie, M., Petersen, J., Schippers, A., and Ranjbar, M., 2011, “Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density.” Hydrometallurgy, 106(1). pp. 84–92.
  • Ahonen, L., and Tuovinen, O. H., 1990, “Catalytic effects of silver in the microbiological leaching of finely ground chalcopyrite-containing ore materials in shake flasks.” Hydrometallurgy, 24(2). pp. 219–236.
  • Akcil, A., 2004, “Potential bioleaching developments towards commercial reality: turkish metal mining’s future.” Minerals Engineering, 17(3). pp. 477–480.
  • Akcil, A., Erust, C., Gahan, C. S., Ozgun, M., Sahin, M., and Tuncuk, A., 2015, “Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants–A review.” Waste Management, 45. pp. 258–271.
  • Alvarez, S., and Jerez, C. A., 2004, “Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans.” Applied and Environmental Microbiology, 70(9). pp. 5177–5182.
  • Amiri, F., Mousavi, S., and Yaghmaei, S., 2011, “Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by penicillium simplicissimum.” Separation and Purification Technology, 80(3). pp. 566–576.
  • Anjum, F., Bhatti, H. N., Asgher, M., and Shahid, M., 2010, “Leaching of metal ions from black shale by organic acids produced by Aspergillus niger.” Applied Clay Science, 47(3). pp. 356–361.
  • Anjum, F., Shahid, M., and Akcil, A., 2012, “Biohydrometallurgy techniques of low grade ores: A review on black shale.” Hydrometallurgy, 117. pp. 1–12.
  • Antonijević, M., and Bogdanović, G., 2004, “Investigation of the leaching of chalcopyritic ore in acidic solutions.” Hydrometallurgy, 73(3). pp. 245–256.
  • Bahadur, R. P., Chakrabarti, P., Rodier, F., and Janin, J., 2003, “Dissecting subunit interfaces in homodimeric proteins.” Proteins: Structure, Function, and Bioinformatics, 53(3). pp. 708–719.
  • Ballester, A., Blázquez, M., González, F., and Muñoz, J., 2003, “New information on the sphalerite bioleaching mechanism at low and high temperature.” Hydrometallurgy, 71(1). pp. 57–66.
  • Barreto, M., Quatrini, R., Bueno, S., Arriagada, C., Valdes, J., Silver, S., Jedlicki, E., and Holmes, D. S., 2003, “Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence.” Hydrometallurgy, 71(1). pp. 97–105.
  • Basilio, C., Kartio, I., and Yoon, R.-H., 1996, “Lead activation of sphalerite during galena flotation.” Minerals Engineering, 9(8). pp. 869–879.
  • Battaglia, F., Morin, D., Garcia, J.-L., and Ollivier, P., 1994, “Isolation and study of two strains of Leptospirillum-like bacteria from a natural mixed population cultured on a cobaltiferous pyrite substrate.” Antonie Van Leeuwenhoek, 66(4). pp. 295–302.
  • Battaglia-Brunet, F., Clarens, M., d’Hugues, P., Godon, J., Foucher, S., and Morin, D., 2002, “Monitoring of a pyrite-oxidising bacterial population using DNA single-strand conformation polymorphism and microscopic techniques.” Applied Microbiology and Biotechnology, 60(1–2). pp. 206–211.
  • Battaglia-Brunet, F., d’Hugues, P., Cabral, T., Cezac, P., Garcia, J.-L., and Morin, D., 1998, “The mutual effect of mixed thiobacilli and leptospirilli populations on pyrite bioleaching.” Minerals Engineering, 11(2). pp. 195–205.
  • Bennett, J., and Tributsch, H., 1978, “Bacterial leaching patterns on pyrite crystal surfaces.” Journal of Bacteriology, 134(1). pp. 310–317.
  • Berry, V., Murr, L., and Hiskey, J., 1978, “Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste.” Hydrometallurgy, 3(4). pp. 309–326.
  • Bevilaqua, D., Lahti, H., Suegama, P. H., Garcia, O., Benedetti, A. V., Puhakka, J. A., and Tuovinen, O. H., 2013, “Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors.” Hydrometallurgy, 138. pp. 1–13.
  • Bosecker, K., 1987, “Microbial recycling of mineral waste products.” Acta Biotechnologica, 7(6). pp. 487–497.
  • Bosecker, K., 1997, “Bioleaching: metal solubilization by microorganisms.” FEMS Microbiology Reviews, 20(3–4). pp. 591–604.
  • Brandl, H., 2001, “8 Microbial leaching of metals.” Biotechnology: Special Processes, 10. pp. 191.
  • Brandl, H., 2008, Microbial leaching of metals, In Biotechnology: Special processes, (H. J. Rehm, G. Reed, Eds.), Weinheim, Germany: Wiley-VCH, pp. 191–224.
  • Brierley, C., 1999, “Bacterial succession in bioheap leaching.” Process Metallurgy, 9. pp. 91–97.
  • Brierley, C., 2001, “Bacterial succession in bioheap leaching.” Hydrometallurgy, 59(2). pp. 249–255.
  • Brierley, C., 2010, “Biohydrometallurgical prospects.” Hydrometallurgy, 104(3). pp. 324–328.
  • Chang-Li, L., Jin-Lan, X., Zhen-Yuan, N., Yi, Y., and Chen-Yan, M., 2012, “Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis.” Bioresource Technology, 110. pp. 462–467.
  • Chen, S.-Y., and Lin, J.-G., 2009, “Enhancement of metal bioleaching from contaminated sediment using silver ion.” Journal of Hazardous Materials, 161(2–3). pp. 893–899.
  • Chong, N., Karamanev, D., and Margaritis, A., 2002, “Effect of particle–particle shearing on the bioleaching of sulfide minerals.” Biotechnology and Bioengineering, 80(3). pp. 349–357.
  • Clark, D., and Norris, P., 1996, “Oxidation of mineral sulphides by thermophilic microorganisms.” Minerals Engineering, 9(11). pp. 1119–1125.
  • Coram, N. J., and Rawlings, D. E., 2002, “Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 C.” Applied and Environmental Microbiology, 68(2). pp. 838–845.
  • Cruz, R., Luna-Sánchez, R., Lapidus, G., González, I., and Monroy, M., 2005, “An experimental strategy to determine galvanic interactions affecting the reactivity of sulfide mineral concentrates.” Hydrometallurgy, 78(3). pp. 198–208.
  • d’Hugues, P., Battaglia-Brunet, F., Clarens, M., and Morin, D., 2003, Microbial diversity of various metal-sulphides bioleaching cultures grown under different operating conditions using 16S-rDNA analysis, In International Biohydrometallurgy Symposium IBS 2003, (M. Tsezos, E. Remoudaki, A. Hatzikioseyian, Eds.), Zografou, Greece: National Technical University of Athens, pp. 1323–1334.
  • Davis-Belmar, C. S., Nicolle, J. L. C., and Norris, P. R., 2008, “Ferrous iron oxidation and leaching of copper ore with halotolerant bacteria in ore columns.” Hydrometallurgy, 94(1). pp. 144–147.
  • Dehghan, R., and Dianati, M., 2015, “The effects of Pb-Zn flotation reagents on the bioleaching process by mesophilic bacteria.” International Journal of Mineral Processing, 143. pp. 80–86.
  • Demergasso, C. S., Castillo, D., and Casamayor, E. O., 2005, “Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap.” Hydrometallurgy, 80(4). pp. 241–253.
  • Devasia, P., and Natarajan, K. A., 2010, “Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces.” International Journal of Mineral Processing, 94(3). pp. 135–139.
  • Deveci, H., Akcil, A., and Alp, I., 2003, Parameters for control and optimization of bioleaching of sulfide minerals, In Process Control and Optimization in Ferrous and Non Ferrous Industry, Materials Science & Technology 2003 Symposium, (F. Kongoli, B. Thomas, K. Sawamiphakdi, Eds.), Pittsburgh, PA: TMS, pp. 77–90.
  • Deveci, H., Jordan, M., Powell, N., and Alp, I., 2008, “Effect of salinity and acidity on bioleaching activity of mesophilic and extremely thermophilic bacteria.” Transactions of Nonferrous Metals Society of China, 18(3). pp. 714–721.
  • Dew, D. W., Lawson, E. N., and Broadhurst, J. L., 1997, The BIOX® process for biooxidation of gold-bearing ores or concentrates, In Biomining: theory, microbes and industrial processes., (D. E. Rawlings, Ed.), Berlin, Springer-Verlag, pp. 45–80.
  • Dixon, D. G., 2000, “Analysis of heat conservation during copper sulphide heap leaching.” Hydrometallurgy, 58(1). pp. 27–41.
  • Donati, E. R., and Sand, W., 2007, Microbial Processing of Metal Sulfides, Dordrecht, The Netherlands: Springer-Verlag.
  • Dong, Y., and Lin, H., 2012, “Influences of flotation reagents on bioleaching of chalcopyrite by Acidthiobacillus ferrooxidans.” Minerals Engineering, 32. pp. 27–29.
  • Dopson, M., Baker-Austin, C., Koppineedi, P. R., and Bond, P. L., 2003, “Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms.” Microbiology, 149(8). pp. 1959–1970.
  • Dopson, M., Sundkvist, J.-E., and Lindström, E. B., 2006, “Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching.” Hydrometallurgy, 81(3). pp. 205–213.
  • Dutrizac, J. E., and Jambor, J. L., 2000, “Jarosites and their application in hydrometallurgy.” Reviews in Mineralogy and Geochemistry, 40(1). pp. 405–452.
  • Ehrlich, H., 1997, “Microbes and metals.” Applied Microbiology and Biotechnology, 48(6). pp. 687–692.
  • Escobar, B., Quiroz, L., and Vargas, T., 2009, “Effect of flotation and solvent extraction reagents on the bioleaching of a copper concentrate with Sulfolobus metallicus.” Advanced Materials Research, 71–73. pp. 421–424.
  • Finch, J. A., Nesset, J. E., and Acuña, C., 2008, “Role of frother on bubble production and behaviour in flotation.” Minerals Engineering, 21(12). pp. 949–957.
  • Finkelstein, N., 1997, “The activation of sulphide minerals for flotation: a review.” International Journal of Mineral Processing, 52(2). pp. 81–120.
  • Franzmann, P., Haddad, C., Hawkes, R., Robertson, W., and Plumb, J., 2005, “Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: application of the Ratkowsky equation.” Minerals Engineering, 18(13). pp. 1304–1314.
  • Frattini, C., Leduc, L., and Ferroni, G., 2000, “Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillus ferrooxidans.” Antonie Van Leeuwenhoek, 77(1). pp. 57–64.
  • Gahan, C. S., Sundkvist, J. E., Dopson, M., and Sandström, Å., 2010, “Effect of chloride on ferrous iron oxidation by a Leptospirillumferriphilum‐dominated chemostat culture.” Biotechnology and Bioengineering, 106(3). pp. 422–431.
  • Gahan, C. S., Sundkvist, J.-E., and Sandström, Å., 2009, “A study on the toxic effects of chloride on the biooxidation efficiency of pyrite.” Journal of Hazardous Materials, 172(2). pp. 1273–1281.
  • Gholami, R. M., Mousavi, S., and Borghei, S., 2012, “Process optimization and modeling of heavy metals extraction from a molybdenum rich spent catalyst by Aspergillus niger using response surface methodology.” Journal of Industrial and Engineering Chemistry, 18(1). pp. 218–224.
  • Golovacheva, R., and Karavaĭko, G., 1977, “Sulfobacillus, a new genus of thermophilic sporulating bacteria.” Mikrobiologiia, 47(5). pp. 815–822.
  • Gomez, E., Ballester, A., Blazquez, M., and Gonzalez, F., 1999, “Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms.” Hydrometallurgy, 51(1). pp. 37–46.
  • Gonzalez, R., Gentina, J. C., and Acevedo, F., 2004, “Biooxidation of a gold concentrate in a continuous stirred tank reactor: mathematical model and optimal configuration.” Biochemical Engineering Journal, 19(1). pp. 33–42.
  • Guay, R., Ghosh, J., and Torma, A., 1989, Kinetics of microbiological production of ferric ion for heap and dump leaching, In Biotechnology in Minerals and Metals Processing, (B. J. Scheiner, F. M. Doyle, and S. K. Kawatra, Eds.), Littleton, CO: Society of Mining Engineers, pp. 95–106.
  • Halinen, A.-K., Rahunen, N., Kaksonen, A. H., and Puhakka, J. A., 2009a, “Heap bioleaching of a complex sulfide ore: part I: effect of pH on metal extraction and microbial composition in pH controlled columns.” Hydrometallurgy, 98(1). pp. 92–100.
  • Halinen, A.-K., Rahunen, N., Kaksonen, A. H., and Puhakka, J. A., 2009b, “Heap bioleaching of a complex sulfide ore: part II. Effect of temperature on base metal extraction and bacterial compositions.” Hydrometallurgy, 98(1). pp. 101–107.
  • Hallberg, K. B., and Johnson, D. B., 2003, “Novel acidophiles isolated from moderately acidic mine drainage waters.” Hydrometallurgy, 71(1). pp. 139–148.
  • Hallmann, R., Friedrich, A., Koops, H. P., Pommerening‐Röser, A., Rohde, K., Zenneck, C., and Sand, W., 1992, “Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching.” Geomicrobiology Journal, 10(3–4). pp. 193–206.
  • Harmer, S. L., Thomas, J. E., Fornasiero, D., and Gerson, A. R., 2006, “The evolution of surface layers formed during chalcopyrite leaching.” Geochimica Et Cosmochimica Acta, 70(17). pp. 4392–4402.
  • Herrera-Urbina, R., Sotillo, F., and Fuerstenau, D., 1999, “Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena.” International Journal of Mineral Processing, 55(3). pp. 157–170.
  • Hiroyoshi, N., Arai, M., Miki, H., Tsunekawa, M., and Hirajima, T., 2002, “A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions.” Hydrometallurgy, 63(3). pp. 257–267.
  • Hiroyoshi, N., Kuroiwa, S., Miki, H., Tsunekawa, M., and Hirajima, T., 2004, “Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions.” Hydrometallurgy, 74(1). pp. 103–116.
  • Huang, P., Wang, L., and Liu, Q., 2014, “Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena.” International Journal of Mineral Processing, 128. pp. 6–15.
  • Huerta, G., Escobar, B., Rubio, J., and Badilla-Ohlbaum, R., 1995, “Short communication: adverse effect of surface-active reagents on the bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans.” World Journal of Microbiology and Biotechnology, 11(5). pp. 599–600.
  • Inoue, C., Sugawara, K., Shiratori, T., Kusano, T., and Kitagawa, Y., 1989, “Nucleotide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric reductase.” Gene, 84(1). pp. 47–54.
  • Jafari, M., Shafaei, S., Abdollahi, H., Gharabaghi, M., and Chehreh Chelgani, S., 2017a, “Effect of flotation reagents on the activity of L. ferrooxidans.” Mineral Processing and Extractive Metallurgy Review, 39(1), pp. 1–10.
  • Jafari, M., Shafaei, S., Abdollahi, H., Gharabaghi, M., Chehreh Chelgani, S., and Ghassa, S., 2017b, “Examining the effects of typical reagents for sulfide flotation on bio-oxidation activity of ferrous iron oxidizing microorganisms.” Solid State Phenomena, 262. pp. 84–87.
  • Jafari, M., Shafaei, S. Z., Abdollahi, H., Gharabaghi, M., and Chehreh Chelgani, S., 2016, “A comparative study on the effect of flotation reagents on growth and iron oxidation activities of leptospirillum ferrooxidans and acidithiobacillus ferrooxidans.” Minerals, 7(1). pp. 2.
  • Jannasch, H. W., 1995, “Microbial interactions with hydrothermal fluids.” In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, (S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux and R. E. Thomson, Eds.), Washington, DC: American Geophysical Union, pp. 273–296.
  • Jones, G. C., Corin, K. C., van Hille, R. P., and Harrison, S. T., 2011, “The generation of toxic reactive oxygen species (ROS) from mechanically activated sulphide concentrates and its effect on thermophilic bioleaching.” Minerals Engineering, 24(11). pp. 1198–1208.
  • Kaksonen, A. H., Lavonen, L., Kuusenaho, M., Kolli, A., Närhi, H., Vestola, E., Puhakka, J. A., and Tuovinen, O. H., 2011, “Bioleaching and recovery of metals from final slag waste of the copper smelting industry.” Minerals Engineering, 24(11). pp. 1113–1121.
  • Kaksonen, A. H., Särkijärvi, S., Puhakka, J. A., Peuraniemi, E., Junnikkala, S., and Tuovinen, O. H., 2015, “Chemical and bacterial leaching of metals from a smelter slag in acid solutions.” Hydrometallurgy, 159. pp. 46–53.
  • Khoshdast, H., and Sam, A., 2011, “Flotation frothers: review of their classifications, properties and preparation.” The Open Mineral Processing Journal, 4. pp. 25–44.
  • Kim, D.-J., Pradhan, D., Ahn, J.-G., and Lee, S.-W., 2010, “Enhancement of metals dissolution from spent refinery catalysts using adapted bacteria culture—effects of pH and Fe (II).” Hydrometallurgy, 103(1). pp. 136–143.
  • Klauber, C., 2008, “A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution.” International Journal of Mineral Processing, 86(1). pp. 1–17.
  • Konishi, Y., Tokushige, M., Asai, S., and Suzuki, T., 2001, “Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors.” Hydrometallurgy, 59(2). pp. 271–282.
  • Krebs, W., Brombacher, C., Bosshard, P. P., Bachofen, R., and Brandl, H., 1997, “Microbial recovery of metals from solids.” FEMS Microbiology Reviews, 20(3–4). pp. 605–617.
  • Kumar, R. N., and Nagendran, R., 2007, “Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans.” Chemosphere, 66(9). pp. 1775–1781.
  • Kupka, D., Liljeqvist, M., Nurmi, P., Puhakka, J. A., Tuovinen, O. H., and Dopson, M., 2009, “Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3.” Research in Microbiology, 160(10). pp. 767–774.
  • Leng, -C.-C., and Pinto, N., 1997, “Effects of surface properties of activated carbons on adsorption behavior of selected aromatics.” Carbon, 35(9). pp. 1375–1385.
  • Li, H.-M., and Ke, J.-J., 2001b, “Influence of Ni 2+ and Mg 2+ on the growth and activity of Cu 2+-adapted Thiobacillus ferrooxidans.” Hydrometallurgy, 61(3). pp. 151–156.
  • Li, H.-M., and Ke, -J.-J., 2001a, “Influence of Cu 2+ and Mg 2+ on the growth and activity of Ni 2+ adapted Thiobacillus ferrooxidans.” Minerals Engineering, 14(1). pp. 113–116.
  • Liu, G., Yin, J., and Cong, W., 2007, “Effect of fluid shear and particles collision on the oxidation of ferrous iron by Acidithiobacillus ferrooxidans.” Minerals Engineering, 20(13). pp. 1227–1231.
  • Liu, H. C., Xia, J. L., Nie, Z. Y., Liu, L. Z., Wang, L., Ma, C. Y., Zheng, L., Zhao, Y. D., and Wen, W., 2017, “Comparative study of S, Fe and Cu speciation transformation during chalcopyrite bioleaching by mixed mesophiles and mixed thermophiles.” Minerals Engineering, 106. pp. 22–32.
  • Liu, Q., and Li, H., 2010, “A comparison of the electrochemical behaviors of pyrite and chalcopyrite in a NaCl solution at room temperature and under differential stress.” Minerals Engineering, 23(9). pp. 691–697.
  • Liu, X., Li, H., Liu, Y., Su, C., and Sand, W., 2015, “Impact of entrained and dissolved organic chemicals associated with copper solvent extraction on Acidithiobacillus ferrooxidans.” Hydrometallurgy, 157. pp. 207–213.
  • Lombardi, A. T., and Garcia, O., 2002, “Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning.” Water Research, 36(13). pp. 3193–3202.
  • Loon, H. Y., and Madgwick, J., 1995, “The effect of xanthate floatation reagents on bacterial leaching of chalcopyrite by Thiobacillus ferrooxidans.” Biotechnology Letters, 17(9). pp. 997–1000.
  • Lundgren, D., and Silver, M., 1980, “Ore leaching by bacteria.” Annual Reviews in Microbiology, 34(1). pp. 263–283.
  • Majima, H., 1969, “How oxidation affects selective flotation of complex sulphide ores.” Canadian Metallurgical Quarterly, 8(3). pp. 269–273.
  • Manafi, Z., Abdollahi, H., and Tuovinen, O. H., 2013, “Shake flask and column bioleaching of a pyritic porphyry copper sulphide ore.” International Journal of Mineral Processing, 119. pp. 16–20.
  • Mangun, C. L., Benak, K. R., Economy, J., and Foster, K. L., 2001, “Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia.” Carbon, 39(12). pp. 1809–1820.
  • Mehta, A., Torma, A., and Murr, L., 1979, “Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi.” Biotechnology and Bioengineering, 21(5). pp. 875–885.
  • Menéndez, J. A., Phillips, J., Xia, B., and Radovic, L. R., 1996, “On the modification and characterization of chemical surface properties of activated carbon: in the search of carbons with stable basic properties.” Langmuir, 12(18). pp. 4404–4410.
  • Miller, J., McDonough, P., and Portillo, H., 1981, Electrochemistry in silver catalyzed ferric sulfate leaching of chalcopyrite, In Process and Fundamental Considerations of Selected Hydrometallurgical Systems, (M. C. Kuhn, Ed.), New York, NY: SME-AIME, pp. 327–338.
  • Miller, J., and Portillo, H., 1979, Silver catalysis in ferric sulfate leaching of chalcopyrite, In XIII International Mineral Processing Congress, (J. Laskowski, Ed.), Amsterdam, The Netherlands: Elsevier, 851–901.
  • Miller, S., 1989, “The structure of interfaces between subunits of dimeric and tetrameric proteins.” Protein Engineering, 3(2). pp. 77–83.
  • Mousavi, S., Jafari, A., Yaghmaei, S., Vossoughi, M., and Roostaazad, R., 2006, “Bioleaching of low-grade sphalerite using a column reactor.” Hydrometallurgy, 82(1). pp. 75–82.
  • Mousavi, S. M., Yaghmaei, S., Vossoughi, M., Roostaazad, R., Jafari, A., Ebrahimi, M., Chabok, O. H., and Turunen, I., 2008, “The effects of Fe (II) and Fe (III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor.” Bioresource Technology, 99(8). pp. 2840–2845.
  • Muñoz, J., Dreisinger, D., Cooper, W., and Young, S., 2007, “Silver-catalyzed bioleaching of low-grade copper ores. Part II: stirred tank tests.” Hydrometallurgy, 88(1). pp. 19–34.
  • Muñoz, J., Dreisinger, D., Cooper, W., and Young, S., 2008, “Interaction of silver ions with sulphide minerals with special emphasis on the chalcopyrite/pyrite galvanic couple.” Canadian Metallurgical Quarterly, 47(3). pp. 259–268.
  • Muñoz, J., Go, C., Ballester, A., Bla, M., Gonza, F., and Figueroa, M., 1998, “Electrochemical behaviour of chalcopyrite in the presence of silver and Sulfolobus bacteria.” Journal of Applied Electrochemistry, 28(1). pp. 49–56.
  • Muñoz, P., Miller, J. D., and Wadsworth, M. E., 1979, “Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite.” Metallurgical Transactions B, 10(2). pp. 149–158.
  • Nakazawa, H., Fujisawa, H., and Sato, H., 1998, “Effect of activated carbon on the bioleaching of chalcopyrite concentrate.” International Journal of Mineral Processing, 55(2). pp. 87–94.
  • Nicol, M. J., and Lázaro, I., 2002, “The role of Eh measurements in the interpretation of the kinetics and mechanisms of the oxidation and leaching of sulphide minerals.” Hydrometallurgy, 63(1). pp. 15–22.
  • Nikoloski, A. N., O’Malley, G. P., and Bagas, S. J., 2017, “The effect of silver on the acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching. Part 1: kinetics and reaction mechanisms.” Hydrometallurgy, 173. pp. 258–270.
  • Norris, P., and Kelly, D., 1978, Toxic Metals in Leaching Systems, In Metallurgical Applications of Bacterial Leaching and Related Microbial Phenomena, (L. E. Murr, A. E. Torma, and J. A. Brierley, Eds.), New York: Academic Press. pp. 83–102.
  • Norris, P., and Owen, J., 1993, “Mineral sulphide oxidation by enrichment cultures of novel thermoacidophilic bacteria.” FEMS Microbiology Reviews, 11(1‐3). pp. 51–56.
  • Norris, P. R., Burton, N. P., and Foulis, N. A., 2000, “Acidophiles in bioreactor mineral processing.” Extremophiles, 4(2). pp. 71–76.
  • Ohgaki, T., Ohashi, N., Sugimura, S., Ryoken, H., Sakaguchi, I., Adachi, Y., and Haneda, H., 2008, “Positive Hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals.” Journal of Materials Research, 23(9). pp. 2293–2295.
  • Okibe, N., Gericke, M., Hallberg, K. B., and Johnson, D. B., 2003, “Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation.” Applied and Environmental Microbiology, 69(4). pp. 1936–1943.
  • Okibe, N., and Johnson, D. B., 2002, “Toxicity of flotation reagents to moderately thermophilic bioleaching microorganisms.” Biotechnology Letters, 24(23). pp. 2011–2016.
  • Olson, G. J., Iverson, W. P., and Brinckman, F. E., 1981, “Volatilization of mercury by Thiobacillus ferrooxidans.” Current Microbiology, 5(2). pp. 115–118.
  • Panda, S., Akcil, A., Pradhan, N., and Deveci, H., 2015a, “Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology.” Bioresource Technology, 196. pp. 694–706.
  • Panda, S., Biswal, A., Mishra, S., Panda, P. K., Pradhan, N., Mohapatra, U., Sukla, L. B., Mishra, B. K., and Akcil, A., 2015b, “Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy.” Hydrometallurgy, 153. pp. 98–105.
  • Panda, S., Parhi, P. K., Pradhan, N., Mohapatra, U. B., Sukla, L. B., and Park, K. H., 2012c, “Extraction of copper from bacterial leach liquor of a low grade chalcopyrite test heap using LIX 984N-C.” Hydrometallurgy, 121-124. pp. 116–119.
  • Panda, S., Sanjay, K., Sukla, L. B., Pradhan, N., Subbaiah, T., Mishra, B. K., Prasad, M. S. R., and Ray, S. K., 2012a, “Insights into heap bioleaching of low grade chalcopyrite ores: A pilot scale study.” Hydrometallurgy, 125-126. pp. 157–165.
  • Panda, S., Sarangi, C. K., Pradhan, N., Subbaiah, T., Sukla, L. B., Mishra, B. K., Bhatoa, G. L., Prasad, M. S. R., and Ray, S. K., 2012b, “Bio-hydrometallurgical processing of low grade chalcopyrite for recovery of copper metal.” Korean Journal of Chemical Engineering, 26. pp. 781–785.
  • Parker, A., Klauber, C., Kougianos, A., Watling, H., and Van Bronswijk, W., 2003, “An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite.” Hydrometallurgy, 71(1). pp. 265–276.
  • Patel, B. C., Tipre, D. R., and Dave, S. R., 2012, “Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses.” Bioresource Technology, 118. pp. 483–489.
  • Pattrick, R., England, K., Charnock, J., and Mosselmans, J., 1999, “Copper activation of sphalerite and its reaction with xanthate in relation to flotation: an X-ray absorption spectroscopy (reflection extended X-ray absorption fine structure) investigation.” International Journal of Mineral Processing, 55(4). pp. 247–265.
  • Petersen, J., and Dixon, D., 2002, “Thermophilic heap leaching of a chalcopyrite concentrate.” Minerals Engineering, 15(11). pp. 777–785.
  • Pizarro, J., Jedlicki, E., Orellana, O., Romero, J., and Espejo, R. T., 1996, “Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation.” Applied and Environmental Microbiology, 62(4). pp. 1323–1328.
  • Plumb, J., Gibbs, B., Stott, M., Robertson, W., Gibson, J., Nichols, P., Watling, H., and Franzmann, P., 2002, “Enrichment and characterisation of thermophilic acidophiles for the bioleaching of mineral sulphides.” Minerals Engineering, 15(11). pp. 787–794.
  • Plumb, J., Muddle, R., and Franzmann, P., 2008, “Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms.” Minerals Engineering, 21(1). pp. 76–82.
  • Pradhan, D., Ahn, J.-G., Kim, D.-J., and Lee, S.-W., 2009, “Effect of Ni2+, V4+ and Mo6+ concentration on iron oxidation by Acidithiobacillus ferrooxidans.” Korean Journal of Chemical Engineering, 26(3). pp. 736–741.
  • Price, D., and Warren, G., 1986, “The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid.” Hydrometallurgy, 15(3). pp. 303–324.
  • Rawlings, D. E., 2002, “Heavy metal mining using microbes 1.” Annual Reviews in Microbiology, 56(1). pp. 65–91.
  • Rawlings, D. E., 2004, “Microbially-assisted dissolution of minerals and its use in the mining industry.” Pure and Applied Chemistry, 76(4). pp. 847–859.
  • Rodríguez, Y., Ballester, A., Blázquez, M. L., González, F., and Muñoz, J. A., 2003a, “New information on the chalcopyrite bioleaching mechanism at low and high temperature.” Hydrometallurgy, 71(1). pp. 47–56.
  • Rodríguez, Y., Ballester, A., Blázquez, M. L., González, F., and Muñoz, J. A., 2003b, “Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite.” Geomicrobiology Journal, 20(2). pp. 131–141.
  • Rohwerder, T., and Sand, W., 2003, “The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphiliumspp.” Microbiology, 149(7). pp. 1699–1710.
  • Rojas-Chapana, J. A., and Tributsch, H., 2004, “Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite.” FEMS Microbiology Ecology, 47(1). pp. 19–29.
  • Sampson, M., and Phillips, C., 2001, “Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophiles.” Minerals Engineering, 14(3). pp. 317–340.
  • Sand, W., Gehrke, T., Hallmann, R., and Schippers, A., 1998, “Towards a novel bioleaching mechanism.” Mineral Procesing and Extractive Metallurgy Review, 19(1). pp. 97–106.
  • Sandström, Å., Shchukarev, A., and Paul, J., 2005, “XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential.” Minerals Engineering, 18(5). pp. 505–515.
  • Schippers, A., Jozsa, P., and Sand, W., 1996, “Sulfur chemistry in bacterial leaching of pyrite.” Applied and Environmental Microbiology, 62(9). pp. 3424–3431.
  • Schippers, A., and Sand, W., 1999, “Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur.” Applied and Environmental Microbiology, 65(1). pp. 319–321.
  • Segerer, A., Neuner, A., Kristjansson, J. K., and Stetter, K. O., 1986, “Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria.” International Journal of Systematic Bacteriology, 36(4). pp. 559–564.
  • Shi, S.-Y., Fang, Z.-H., and Ni, J.-R., 2005, “Electrochemical impedance spectroscopy of marmatite–carbon paste electrode in the presence and absence of Acidithiobacillus ferrooxidans.” Electrochemistry Communications, 7(11). pp. 1177–1182.
  • Shiratori, T., Inoue, C., Sugawara, K., Kusano, T., and Kitagawa, Y., 1989, “Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli.” Journal of Bacteriology, 171(6). pp. 3458–3464.
  • Stott, M., Sutton, D., Watling, H., and Franzmann, P., 2003, “Comparative leaching of chalcopyrite by selected acidophilic bacteria and archaea.” Geomicrobiology Journal, 20(3). pp. 215–230.
  • Stout, J., Van Driessche, G., Savvides, S. N., and Van Beeumen, J., 2007, “X‐ray crystallographic analysis of the sulfur carrier protein SoxY from Chlorobium limicola f. thiosulfatophilum reveals a tetrameric structure.” Protein Science, 16(4). pp. 589–601.
  • Third, K., Cord-Ruwisch, R., and Watling, H., 2000, “The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching.” Hydrometallurgy, 57(3). pp. 225–233.
  • Thomas, J. E., Skinner, W. M., and Smart, R. S. C., 2001, “A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution.” Geochimica Et Cosmochimica Acta, 65(1). pp. 1–12.
  • Torma, A. E., 1977, “The role of Thiobacillus ferrooxidans in hydrometallurgical processes.” Advances in Biochemical Engineering, 6. pp. 1–37.
  • Torma, A. E., Gabra, G., Guay, R., and Silver, M., 1976, “Effects of surface active agents on the oxidation of chalcopyrite by Thiobacillus ferrooxidans.” Hydrometallurgy, 1(4). pp. 301–309.
  • Tsai, L.-J., Yu, K.-C., Chen, S.-F., and Kung, P.-Y., 2003, “Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching.” Water Research, 37(10). pp. 2449–2457.
  • Tuffin, I. M., de Groot, P., Deane, S. M., and Rawlings, D. E., 2004, “Multiple sets of arsenic resistance genes are present within highly arsenic-resistant industrial strains of the biomining bacterium: Acidithiobacillus caldus.” International Congress Series, 1275 (12). 165–172.
  • Tuffin, I. M., de Groot, P., Deane, S. M., and Rawlings, D. E., 2005, “An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus.” Microbiology, 151(9). pp. 3027–3039.
  • Tuffin, I. M., Hector, S. B., Deane, S. M., and Rawlings, D. E., 2006, “Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank.” Applied and Environmental Microbiology, 72(3). pp. 2247–2253.
  • Tuovinen, O. H., 1978, “Inhibition of Thiobacillus ferrooxidans by mineral flotation reagents.” Applied Microbiology and Biotechnology, 5(4). pp. 301–304.
  • Tuovinen, O. H., and Kelly, D. P., 1973, “Studies on the growth of Thiobacillus ferrooxidans.” Archiv Für Mikrobiologie, 88(4). pp. 285–298.
  • Tuovinen, O. H., Niemelä, S., and Gyllenberg, H., 1971, “Tolerance of Thiobacillus ferrooxidans to some metals.” Antonie Van Leeuwenhoek, 37(1). pp. 489–496.
  • Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., and Banfield, J. F., 2004, “Community structure and metabolism through reconstruction of microbial genomes from the environment.” Nature, 428(6978). pp. 37–43.
  • Van Aswegen, P. C., Van Niekerk, J., and Olivier, W., 2007, The BIOX™ Process for the Treatment of Refractory Gold Concentrates, In Biomining, (D. E. Rawlings and D. B. Johnson, Eds.), Berlin: Springer-Verlag, pp. 1–33.
  • Velasquez, P., Leinen, D., Pascual, J., Ramos-Barrado, J. R., Grez, P., Gomez, H., Schrebler, R., Del Río, R., and Cordova, R., 2005, “A chemical, morphological, and electrochemical (XPS, SEM/ EDX,CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions.” The Journal of Physical Chemistry B, 109(11). pp. 4977–4988.
  • Vera, M., Schippers, A., and Sand, W., 2013, “Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A.” Applied Microbiology and Biotechnology, 97(17). pp. 7529–7541.
  • Vestola, E. A., Kuusenaho, M. K., Närhi, H. M., Tuovinen, O. H., Puhakka, J. A., Plumb, J. J., and Kaksonen, A. H., 2010, “Acid bioleaching of solid waste materials from copper, steel and recycling industries.” Hydrometallurgy, 103(1). pp. 74–79.
  • Warren, G., Drouven, B., and Price, D., 1984, “Relationships between the pourbaix diagram for Ag-S-H2O and electrochemical oxidation and reduction of Ag2S.” Metallurgical Transactions, B,15(2). pp. 235–242.
  • Watson, V. J., Nieto Delgado, C., and Logan, B. E., 2013, “Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance.” Environmental Science & Technology, 47(12). pp. 6704–6710.
  • Widler, A., and Seward, T., 2002, “The adsorption of gold (I) hydrosulphide complexes by iron sulphide surfaces.” Geochimica Et Cosmochimica Acta, 66(3). pp. 383–402.
  • Wintzingerode, F. V., Göbel, U. B., and Stackebrandt, E., 1997, “Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis.” FEMS Microbiology Reviews, 21(3). pp. 213–229.
  • Xia, L., Liu, X., Zeng, J., Yin, C., Gao, J., Liu, J., and Qiu, G., 2008, “Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite.” Hydrometallurgy, 92(3). pp. 95–101.
  • Yang, T., Xu, Z., Wen, J., and Yang, L., 2009, “Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans.” Hydrometallurgy, 97(1). pp. 29–32.
  • Yu, H., Liu, X., Shen, J., and Chi, D. 2017, “March. Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans.” In AIP Conference Proceedings (Vol. 1820, No. 1, p. 030006). AIP Publishing.
  • Zeng, G.-M., Shi, J.-G., Yuan, X.-Z., Liu, J., Zhang, Z.-B., Huang, G.-H., Li, J.-B., Xi, B.-D., and Liu, H.-L., 2006, “Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost.” Enzyme and Microbial Technology, 39(7). pp. 1451–1456.
  • Zhang, C.-G., Xia, J.-L., Zhang, R.-Y., Peng, -A.-A., Nie, Z.-Y., and Qiu, G.-Z., 2008, “Comparative study on effects of Tween-80 and sodium isobutyl-xanthate on growth and sulfur-oxidizing activities of Acidithiobacillus albertensis BY-05.” Transactions of Nonferrous Metals Society of China, 18(4). pp. 1003–1007.
  • Zhang, Q. D., Li, X. L., Li, M. M., and Yuan, C., 2013, “Study on Flotation Separation Experiment of Molybdenite Using New Type Collector.” Advanced Materials Research, 753-755. Switzerland, pp. 81–84.
  • Zhang, W.-M., and Gu, S.-F., 2007, “Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulfide ores.” Transactions of Nonferrous Metals Society of China, 17(5). pp. 1123–1127.
  • Zhao, H., Huang, X., Wang, J., Li, Y., Liao, R., Wang, X., Qiu, X., Xiong, Y., Qin, W., and Qiu, G., 2017, “Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite.” Minerals Engineering, 109. pp. 153–161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.