551
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Interactions between a Small Bubble and a Greater Solid Particle during the Flotation Process

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abramova, O. A., I. S. Akhatov, N. A. Gumerov, Y. A. Pityuk, and S. P. Sametov. 2018. Numerical and experimental study of bubble dynamics in contact with a solid surface. Fluid Dynamics 53:337–46. doi:10.1134/S0015462818030023.
  • Alter, H. 2005. The recovery of plastics from waste with reference to froth flotation. Resources Conservation and Recycling 43:119–32. doi:10.1016/j.resconrec.2004.05.003.
  • Basarova, P., and M. Hubicka. 2014. The collision efficiency of small bubbles with large particles. Minerals Engineering 66-68:230–33. doi:10.1016/j.mineng.2014.06.006.
  • Basarova, P., V. Machon, M. Hubicka, and D. Horn. 2010. Collision processes involving a single rising bubble and a larger stationary spherical particle. International Journal of Mineral Processing 94:58–66. doi:10.1016/j.minpro.2009.11.004.
  • Basarova, P., and K. Souskova. 2018. Detailed experimental study of bubble adhesion on hydrophobic surface. Physicochemical Problems of Mineral Processing 54:111–23.
  • Basarova, P., K. Souskova, and J. Zawala. 2018. Three-phase contact line expansion during air bubble attachment to hydrophobic solid surface - experiment and modeling. Physicochemical Problems of Mineral Processing 54:1095–106.
  • Basarova, P., H. Suchanova, K. Souskova, and T. Vachova. 2017. Bubble adhesion on hydrophobic surfaces in solutions of pure and technical grade ionic surfactants. Colloids and Surfaces a-Physicochemical and Engineering Aspects 522:485–93.
  • Basarova, P., T. Vachova, G. Moore, G. Nannetti, and J. Pislova. 2016. Bubble adhesion onto the hydrophobic surface in solutions of non-ionic surface-active agents. Colloids and Surfaces a-Physicochemical and Engineering Aspects 505:64–71.
  • Basařová, P., and M. Zedníková. 2019. Effect of surfactants on bubble-particle interactions. IntechOpen. doi:10.5772/intechopen.85436.
  • Blake, T. D. 2006. The physics of moving wetting lines. Journal of Colloid and Interface Science 299:1–13. doi:10.1016/j.jcis.2006.03.051.
  • Blake, T. D., and J. M. Haynes. 1969. Kinetics of liquid/liquid displacement. Journal of Colloid and Interface Science 30:421–23. doi:10.1016/0021-9797(69)90411-1.
  • Bonn, D., J. Eggers, J. Indekeu, J. Meunier, and E. Rolley. 2009. Wetting and spreading. Reviews of Modern Physics 81:739–805. doi:10.1103/RevModPhys.81.739.
  • Bournival, G., S. Ata, and G. J. Jameson. 2017. Bubble and froth stabilizing agents in froth flotation. Mineral Processing and Extractive Metallurgy Review 38:366–87. doi:10.1080/08827508.2017.1323747.
  • Brabcova, Z., T. Karapantsios, M. Kostoglou, P. Basarova, and K. Matis. 2015. Bubble-particle collision interaction in flotation systems. Colloids and Surfaces A - Physicochemical and Engineering Aspects 473:95–103.
  • Chan, D. Y. C., E. Klaseboer, and R. Manica. 2011. Film drainage and coalescence between deformable drops and bubbles. Soft Matter 7:2235–64. doi:10.1039/C0SM00812E.
  • Clift, R., J. Grace, and M. E. Weber. 2005. Bubbles, drops, and particles. Mineola, N.Y: Dover Publications.
  • Cox, R. G. 1986. The dynamics of the spreading of liquids on a solid-surface .1. Viscous-Flow. Journal of Fluid Mechanics 168:169–94. doi:10.1017/S0022112086000332.
  • Cuenot, B., J. Magnaudet, and B. Spennato. 1997. The effects of slightly soluble surfactants on the flow around a spherical bubble. Journal of Fluid Mechanics 339:25–53. doi:10.1017/S0022112097005053.
  • Dai, Z. F., S. Dukhin, D. Fornasiero, and J. Ralston. 1998. The inertial hydrodynamic interaction of particles and rising bubbles with mobile surfaces. Journal of Colloid and Interface Science 197:275–92.
  • Dai, Z. F., D. Fornasiero, and J. Ralston. 1999. Particle-bubble attachment in mineral flotation. Journal of Colloid and Interface Science 217:70–76. doi:10.1006/jcis.1999.6319.
  • Dai, Z. F., D. Fornasiero, and J. Ralston. 2000. Particle-bubble collision models - a review. Advances in Colloid and Interface Science 85:231–56.
  • Danov, K. D., S. D. Kralchevska, P. A. Kralchevsky, G. Broze, and A. Mehreteab. 2003. Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces. 2. Sodium dodecylbenzene sulfonate and dodecylbenzene. Langmuir 19:5019–30. doi:10.1021/la0268505.
  • Danov, K. D., R. D. Stanimirova, P. A. Kralchevsky, K. G. Marinova, S. D. Stoyanov, T. B. J. Blijdenstein, A. R. Cox, and E. G. Pelan. 2016. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry. Advances in Colloid and Interface Science 233:223–39. doi:10.1016/j.cis.2015.06.003.
  • Davis, R. E., and A. Acrivos. 1966. Influence of surfactants on creeping motion of bubbles. Chemical Engineering Science 21:681–85. doi:10.1016/0009-2509(66)80017-9.
  • De Coninck, J., M. J. De Ruijter, and M. Voue. 2001. Dynamics of wetting. Current Opinion in Colloid & Interface Science 6:49–53. doi:10.1016/S1359-0294(00)00087-X.
  • Dehghani, A., A. Azizi, S. H. Mojtahedzadeh, and K. Gharibi. 2012. Optimizing rougher flotation parameters of the Esfordi Phosphate Ore. Mineral Processing and Extractive Metallurgy Review 33:260–68. doi:10.1080/08827508.2011.584092.
  • Denner, F. 2018. Wall collision of deformable bubbles in the creeping flow regime. European Journal of Mechanics B-Fluids 70:36–45. doi:10.1016/j.euromechflu.2018.02.002.
  • Derjaguin, B. V., and S. S. Dukhin. 1993. Theory of flotation of small and medium-size particles. Progress in Surface Science 43:241–66. doi:10.1016/0079-6816(93)90034-S.
  • Dukhin, S. S., V. I. Kovalchuk, G. G. Gochev, M. Lotfi, M. Krzan, K. Malysa, and R. Miller. 2015. Dynamics of rear stagnant cap formation at the surface of spherical bubbles rising in surfactant solutions at large reynolds numbers under conditions of small Marangoni number and slow sorption kinetics. Advances in Colloid and Interface Science 222:260–74. doi:10.1016/j.cis.2014.10.002.
  • Eastoe, J., and J. S. Dalton. 2000. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Advances in Colloid and Interface Science 85:103–44.
  • Ejtemaei, M., and A. V. Nguyen. 2017a. A comparative study of the attachment of air bubbles onto sphalerite and pyrite surfaces activated by copper sulphate. Minerals Engineering 109:14–20. doi:10.1016/j.mineng.2017.02.008.
  • Ejtemaei, M., and A. V. Nguyen. 2017b. Kinetic studies of amyl xanthate adsorption and bubble attachment to Cu-activated sphalerite and pyrite surfaces. Minerals Engineering 112:36–42. doi:10.1016/j.mineng.2017.07.005.
  • Eskanlou, A., M. R. Khalesi, M. Mirmogaddam, M. H. Chegeni, and B. V. Hassas. 2019. Investigation of trajectory and rise velocity of loaded and bare single bubbles in flotation process using video processing technique. Separation Science and Technology 54:1795–802. doi:10.1080/01496395.2018.1539104.
  • Flint, L. R. H. W. J., and W. J. Howarth. 1971. The collision efficiency of small particles with spherical air bubbles. Chemical Engineering Science 26:1155–68. doi:10.1016/0009-2509(71)87002-1.
  • Fraunholcz, N. 2004. Separation of waste plastics by froth flotation - a review, part I. Minerals Engineering 17:261–68. doi:10.1016/j.mineng.2003.10.028.
  • Fujasova-Zednikova, M., L. Vobecka, and J. Vejrazka. 2010. Effect of solid material and surfactant presence on interactions of bubbles with horizontal solid surface. Canadian Journal of Chemical Engineering 88:473–81.
  • Gontijo, C. D., D. Fornasiero, and J. Ralston. 2007. The limits of fine and coarse particle flotation. Canadian Journal of Chemical Engineering 85:739–47. doi:10.1002/cjce.5450850519.
  • Grace, J. R., T. Wairegi, and T. H. Nguyen. 1976. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Transactions of the Institution of Chemical Engineers 54:167–73.
  • Harper, J. F. 1973. Bubbles with small immobile adsorbed films rising in liquids at low reynolds-numbers. Journal of Fluid Mechanics 58:539–45. doi:10.1017/S0022112073002314.
  • Harper, J. F. 1974. Spherical bubbles rising steadily in dilute surfactant solutions. Quarterly Journal of Mechanics and Applied Mathematics 27:87–100. doi:10.1093/qjmam/27.1.87.
  • Harper, J. F. 1982. Surface-activity and bubble motion. Applied Scientific Research 38:343–52. doi:10.1007/BF00385964.
  • Harvey, P. A., A. V. Nguyen, G. J. Jameson, and G. M. Evans. 2005. Influence of sodium dodecyl sulphate and Dowfroth frothers on froth stability. Minerals Engineering 18:311–15. doi:10.1016/j.mineng.2004.06.011.
  • Hassanzadeh, A., M. Firouzi, B. Albijanic, and M. S. Celik. 2018. A review on determination of particle-bubble encounter using analytical, experimental and numerical methods. Minerals Engineering 122:296–311. doi:10.1016/j.mineng.2018.04.014.
  • Hassanzadeh, A., B. V. Hassas, S. Kouachi, Z. Brabcova, and M. S. Celik. 2016. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloids and Surfaces A - Physicochemical and Engineering Aspects 498:258–67.
  • Hendrix, M. H. W., R. Manica, E. Klaseboer, D. Y. C. Chan, and C. D. Ohl. 2012. Spatiotemporal evolution of thin liquid films during impact of water bubbles on glass on a micrometer to nanometer scale. Physical Review Letters 108: doi: 10.1103/PhysRevLett.108.247803.
  • Henrich, F., D. Fell, D. Truszkowska, M. Weirich, M. Anyfantakis, T. H. Nguyen, M. Wagner, G. K. Auernhammer, and H. J. Butt. 2016. Influence of surfactants in forced dynamic dewetting. Soft Matter 12:7782–91. doi:10.1039/C6SM00997B.
  • Hubicka, M., P. Basarova, and J. Vejrazka. 2013. Collision of a small rising bubble with a large falling particle. International Journal of Mineral Processing 121:21–30. doi:10.1016/j.minpro.2013.02.013.
  • Karakas, F., and B. Vaziri Hassas. 2016. Effect of surface roughness on interaction of particles in flotation. Physicochemical Problems of Mineral Processing 52:18–34.
  • Klaseboer, E., R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan. 2014. A force balance model for the motion, impact, and bounce of bubbles. Physics of Fluids 26:092101. doi:10.1063/1.4894067.
  • Kosior, D., P. B. Kowalczuk, and J. Zawala. 2018. Surface roughness in bubble attachment and flotation of highly hydrophobic solids in presence of frother - experiment and simulations. Physicochemical Problems of Mineral Processing 54:63–72.
  • Kosior, D., J. Zawala, M. Krasowska, and K. Malysa. 2013. Influence of n-octanol and alpha-terpineol on thin film stability and bubble attachment to hydrophobic surface. Physical Chemistry Chemical Physics 15:2586–95. doi:10.1039/c2cp43545d.
  • Kosior, D., J. Zawala, and K. Malysa. 2014. Influence of n-octanol on the bubble impact velocity, bouncing and the three phase contact formation at hydrophobic solid surfaces. Colloids and Surfaces A - Physicochemical and Engineering Aspects 441:788–95.
  • Kosior, D., J. Zawala, A. Niecikowska, and K. Malysa. 2015. Influence of non-ionic and ionic surfactants on kinetics of the bubble attachment to hydrophilic and hydrophobic solids. Colloids and Surfaces A - Physicochemical and Engineering Aspects 470:333–41.
  • Kouachi, S., B. V. Hassas, A. Hassanzadeh, M. S. Celik, and M. Bouhenguel. 2017. Effect of negative inertial forces on bubble-particle collision via implementation of Schulze collision efficiency in general flotation rate constant equation. Colloids and Surfaces A - Physicochemical and Engineering Aspects 517:72–83.
  • Kowalczuk, P. B., and J. Zawala. 2016. A relationship between time of three-phase contact formation and flotation kinetics of naturally hydrophobic solids. Colloids and Surfaces A - Physicochemical and Engineering Aspects 506:371–77.
  • Kralchevsky, P. A., K. D. Danov, V. L. Kolev, G. Broze, and A. Mehreteab. 2003. Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces. 1. Sodium dodecyl sulfate and dodecanol. Langmuir 19:5004–18. doi:10.1021/la0268496.
  • Krasowska, M., and K. Malysa. 2007a. Kinetics of bubble collision and attachment to hydrophobic solids: I. Effect of surface roughness. International Journal of Mineral Processing 81:205–16. doi:10.1016/j.minpro.2006.05.003.
  • Krasowska, M., and K. Malysa. 2007b. Wetting films in attachment of the colliding bubble. Advances in Colloid and Interface Science 134-35:138–50. doi:10.1016/j.cis.2007.04.010.
  • Krasowska, M., P. M. F. Sellapperumage, J. Ralston, and D. A. Beattie. 2018. Influence of dissolved air on bubble attachment to highly oriented pyrolytic graphite. Physicochemical Problems of Mineral Processing 54:163–73.
  • Krasowska, M., J. Zawala, and K. Malysa. 2009. Air at hydrophobic surfaces and kinetics of three phase contact formation. Advances in Colloid and Interface Science 147-48:155–69. doi:10.1016/j.cis.2008.10.003.
  • Krzan, M., K. Lunkenheimer, and K. Malysa. 2004. On the influence of the surfactant’s polar group on the local and terminal velocities of bubbles. Colloids and Surfaces A - Physicochemical and Engineering Aspects 250:431–41.
  • Kulkarni, A. A., and J. B. Joshi. 2005. Bubble formation and bubble rise velocity in gas-liquid systems: A review. Industrial & Engineering Chemistry Research 44:5873–931. doi:10.1021/ie049131p.
  • Legendre, D., C. Daniel, and P. Guiraud. 2005. Experimental study of a drop bouncing on a wall in a liquid. Physics of Fluids 17:097105. doi:10.1063/1.2010527.
  • Legendre, D., R. Zenit, C. Daniel, and P. Guiraud. 2006. A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid. Chemical Engineering Science 61:3543–49. doi:10.1016/j.ces.2005.12.028.
  • Levich, V. G. 1962. Physicochemical hydrodynamics. Englewood Cliffs, N.J: Prentice-Hall.
  • Lucassen, J. 1968a. Longitudinal capillary Waves .1. Theory. Transactions of the Faraday Society 64:2221–29. doi:10.1039/TF9686402221.
  • Lucassen, J. 1968b. Longitudinal capillary Waves .2. Experiments. Transactions of the Faraday Society 64:2230–935. doi:10.1039/TF9686402230.
  • Magnaudet, J., and I. Eames. 2000. The motion of high-Reynolds-mumber bubbles in inhomogeneous flows. Annual Review of Fluid Mechanics 32:659–708. doi:10.1146/annurev.fluid.32.1.659.
  • Malysa, K., M. Krasowska, and M. Krzan. 2005. Influence of surface active substances on bubble motion and collision with various interfaces. Advances in Colloid and Interface Science 114:205–25. doi:10.1016/j.cis.2004.08.004.
  • Manica, R., M. H. W. Hendrix, R. Gupta, E. Klaseboer, C. D. Ohl, and D. Y. C. Chan. 2013. Effects of hydrodynamic film boundary conditions on bubble-wall impact. Soft Matter 9:9755–58. doi:10.1039/c3sm51769a.
  • Manica, R., M. H. W. Hendrix, R. Gupta, E. Klaseboer, C. D. Ohl, and D. Y. C. Chan. 2014. Modelling bubble rise and interaction with a glass surface. Applied Mathematical Modelling 38:4249–61. doi:10.1016/j.apm.2014.03.039.
  • Manica, R., E. Klaseboer, and D. Y. C. Chan. 2015. Force balance model for bubble rise, impact, and bounce from solid surfaces. Langmuir 31:6763–72. doi:10.1021/acs.langmuir.5b01451.
  • Manica, R., E. Klaseboer, and D. Y. C. Chan. 2016. The hydrodynamics of bubble rise and impact with solid surfaces. Advances in Colloid and Interface Science 235:214–32. doi:10.1016/j.cis.2016.06.010.
  • Mei, R., and J. F. Klausner. 1992. Unsteady force on a spherical bubble at finite reynolds-number with small fluctuations in the free-stream velocity. Physics of Fluids a-Fluid Dynamics 4:63–70. doi:10.1063/1.858501.
  • Moore, D. W. 1959. The rise of a gas bubble in a viscous liquid. Journal of Fluid Mechanics 6:113–30. doi:10.1017/S0022112059000520.
  • Moore, D. W. 1965. Velocity of rise of distorted gas bubbles in a liquid of small viscosity. Journal of Fluid Mechanics 23:749–66. doi:10.1017/S0022112065001660.
  • Mukherjee, M., and A. K. Lahiri. 2005. Three-phase contact line profile between a large air bubble and a flat solid surface. Journal of Colloid and Interface Science 291:593–96. doi:10.1016/j.jcis.2005.05.032.
  • Nguyen, A. V. 1999. Hydrodynamics of liquid flows around air bubbles in flotation: A review. International Journal of Mineral Processing 56:165–205. doi:10.1016/S0301-7516(98)00047-7.
  • Nguyen, A. V., and H. J. Schulze. 2004. Colloidal science of flotation. New York: Marcel Dekker, Inc.
  • Nguyen, A. V., H. J. Schulze, and J. Ralston. 1997. Elementary steps in particle-bubble attachment. International Journal of Mineral Processing 51:183–95. doi:10.1016/S0301-7516(97)00030-6.
  • Pascoe, R. D. 2005. The use of selective depressants for the separation of ABS and HIPS by froth flotation. Minerals Engineering 18:233–37. doi:10.1016/j.mineng.2004.07.006.
  • Petrov, P. G., and J. G. Petrov. 1992. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8:1762–67. doi:10.1021/la00043a013.
  • Phan, C. A., A. V. Nguyen, and G. A. Evans. 2006. Combining hydrodynamics and molecular kinetics to predict dewetting between a small bubble and a solid surface. Journal of Colloid and Interface Science 296:669–76. doi:10.1016/j.jcis.2005.09.062.
  • Phan, C. M., A. V. Nguyen, and G. M. Evans. 2003. Assessment of hydrodynamic and molecular-kinetic models applied to the motion of the dewetting contact line between a small bubble and a solid surface. Langmuir 19:6796–801. doi:10.1021/la034038b.
  • Pita, F., and A. Castilho. 2017. Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Management 60:91–99. doi:10.1016/j.wasman.2016.07.041.
  • PlasticsEurope. 2018. Plastics europe, annual report 2017-2018. PlasticsEurope AISBL, Brussels.
  • Radulovic, J., K. Sefiane, V. M. Starov, N. Ivanova, and M.E.R. Shanahan. 2013. Review on kinetics of spreading and wetting by aqueous surfactant solutions. In Drops and bubbles in contact with solid surfaces, ed. M. L. Ferrari and R. Miller, 37–69. Boca Raton: CRC Press.
  • Ragaert, K., L. Delva, and K. Van Geem. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Management 69:24–58. doi:10.1016/j.wasman.2017.07.044.
  • Ralston, J., and S. S. Dukhin. 1999. The interaction between particles and bubbles. Colloids and Surfaces A - Physicochemical and Engineering Aspects 151:3–14.
  • Ralston, J., S. S. Dukhin, and N. A. Mishchuk. 2002. Wetting film stability and flotation kinetics. Advances in Colloid and Interface Science 95:145–236.
  • Ralston, J., D. Fornasiero, and R. Hayes. 1999. Bubble-particle attachment and detachment in flotation. International Journal of Mineral Processing 56:133–64. doi:10.1016/S0301-7516(98)00046-5.
  • Ranabothu, S. R., C. Karnezis, and L. L. Dai. 2005. Dynamic wetting: Hydrodynamic or molecular-kinetic? Journal of Colloid and Interface Science 288:213–21. doi:10.1016/j.jcis.2005.02.074.
  • Rodrigue, D. 2004. A general correlation for the rise velocity of single gas bubbles. Canadian Journal of Chemical Engineering 82:382–86. doi:10.1002/cjce.5450820219.
  • Rodrigue, D., D. DeKee, and C. Fong. 1996. An experimental study of the effect of surfactants on the free rise velocity of gas bubbles. Journal of non-Newtonian Fluid Mechanics 66:213–32. doi:10.1016/S0377-0257(96)01486-3.
  • Sadhal, S. S., and R. E. Johnson. 1983. Stokes-Flow past bubbles and drops partially coated with thin-Films .1. Stagnant cap of surfactant film - Exact solution. Journal of Fluid Mechanics 126:237–50. doi:10.1017/S0022112083000130.
  • Shen, H. T., E. Forssberg, and R. J. Pugh. 2001. Selective flotation separation of plastics by particle control. Resources Conservation and Recycling 33:37–50. doi:10.1016/S0921-3449(01)00056-8.
  • Shen, H. T., R. J. Pugh, and E. Forssberg. 1999. A review of plastics waste recycling and the flotation of plastics. Resources Conservation and Recycling 27:285–86. doi:10.1016/S0921-3449(99)00032-4.
  • Somasundaran, P., and S. Krishnakumar. 1997. Adsorption of surfactants and polymers at the solid-liquid interface. Colloids and Surfaces A - Physicochemical and Engineering Aspects 123:491–513.
  • Stechemesser, H., and A. V. Nguyen. 1998. Dewetting kinetics between a gas bubble and a flat solid surface and the effect of three-phase solid-gas-liquid contact line tension. Colloids and Surfaces A - Physicochemical and Engineering Aspects 142:257–64.
  • Stockelhuber, K. W., B. Radoev, A. Wenger, and H. J. Schulze. 2004. Rupture of wetting films caused by nanobubbles. Langmuir 20:164–68.
  • Sutherland, K. L. 1948. Physical chemistry of flotation. XI. Kinetics of the flotation process. Journal of Physical and Colloid Chemistry 52:394–425.
  • Tadros, T. F. 2014. An introduction to surfactants. Berlin: de Gruyter.
  • Tao, D. 2004. Role of bubble size in flotation of coarse and fine particles - A review. Separation Science and Technology 39:741–60. doi:10.1081/SS-120028444.
  • Tomiyama, A., 2004. Drag, lift and virtual mass forces acting on a single bubble. 3rd. International symposium on two-phase flow modelling and experimentation, I–3–12, Italy: ETS, Pisa.
  • Tomiyama, A., I. Kataoka, I. Zun, and T. Sakaguchi. 1998. Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal Series B-Fluids and Thermal Engineering 41:472–79. doi:10.1299/jsmeb.41.472.
  • Tsao, H. K., and D. L. Koch. 1997. Observations of high reynolds number bubbles interacting with a rigid wall. Physics of Fluids 9:44–56. doi:10.1063/1.869168.
  • Vejrazka, J., L. Vobecka, and J. Tihon. 2013. Linear oscillations of a supported bubble or drop. Physics of Fluids 25:062102. doi:10.1063/1.4810959.
  • Ward, R. N., P. B. Davies, and C. D. Bain. 1997. Coadsorption of sodium dodecyl sulfate and dodecanol at a hydrophobic surface. Journal of Physical Chemistry B 101:1594–601. doi:10.1021/jp962565g.
  • Welle, F. 2011. Twenty years of PET bottle to bottle recycling-An overview. Resources Conservation and Recycling 55:865–75. doi:10.1016/j.resconrec.2011.04.009.
  • Xing, Y. W., X. H. Gui, F. Karakas, and Y. J. Cao. 2017. Role of collectors and depressants in mineral flotation: A theoretical analysis based on extended DLVO theory. Minerals 7:223. doi:10.3390/min7110223.
  • Yalcin, T., and A. Byers. 2006. Dissolved gas flotation in mineral processing. Mineral Processing and Extractive Metallurgy Review 27:87–97. doi:10.1080/08827500500339331.
  • Zawala, J., J. Drzymala, and K. Malysa. 2008. An investigation into the mechanism of the three-phase contact formation at fluorite surface by colliding bubble. International Journal of Mineral Processing 88:72–79. doi:10.1016/j.minpro.2008.06.006.
  • Zawala, J., and D. Kosior. 2016. Dynamics of dewetting and bubble attachment to rough hydrophobic surfaces - Measurements and modelling. Minerals Engineering 85:112–22. doi:10.1016/j.mineng.2015.11.003.
  • Zawala, J., D. Kosior, T. Dabros, and K. Malysa. 2016. Influence of bubble surface fluidity on collision kinetics and attachment to hydrophobic solids. Colloids and Surfaces A - Physicochemical and Engineering Aspects 505:47–55.
  • Zawala, J., D. Kosior, and K. Malysa. 2015. Formation and influence of the dynamic adsorption layer on kinetics of the rising bubble collisions with solution/gas and solution/solid interfaces. Advances in Colloid and Interface Science 222:765–78. doi:10.1016/j.cis.2014.07.013.
  • Zawala, J., M. Krasowska, T. Dabros, and K. Malysa. 2007. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. Canadian Journal of Chemical Engineering 85:669–78. doi:10.1002/cjce.5450850514.
  • Zenit, R., and D. Legendre. 2009. The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids. Physics of Fluids 21:083306. doi:10.1063/1.3210764.
  • Zhu, H. Z., A. L. Valdivieso, J. B. Zhu, F. F. Min, S. X. Song, and M. A. C. Arroyo. 2019. Air dispersion and bubble characteristics in a downflow flotation column. Mineral Processing and Extractive Metallurgy Review 40:224–29. doi:10.1080/08827508.2018.1556159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.