865
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Effects of Grinding Media on Grinding Products and Flotation Performance of Sulfide Ores

, &

References

  • Abramov, A. A., and K. S. E. Forssberg. 2005. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review 26 (2):77–143. doi:10.1080/08827500590883197.
  • Acarkan, N., O. B. Hundemir, O. Kökkiliç, A. A. Sirkeci, and M. Özer. 2007. Study of the settling of tincal mineral particles in different fluid media. Mineral Processing and Extractive Metallurgy Review 29 (2):98–103. doi:10.1080/08827500701257886.
  • Adam, K., K. A. Natarajan, and I. Iwasaki. 1984. Grinding media wear and its effect on the flotation of sulfide minerals. International Journal of Mineral Processing 12 (1–3):39–54. doi:10.1016/0301-7516(84)90021-8.
  • Ahmed, M. M. 2010. Effect of comminution on particle shape and surface roughness and their relation to flotation process. International Journal of Mineral Processing 94 (3–4):180–91. doi:10.1016/j.minpro.2010.02.007.
  • Ahn, J. H., and J. E. Gebhardt. 1991. Effect of grinding media–Chalcopyrite interaction on the self-induced flotation of chalcopyrite. International Journal of Mineral Processing 33 (1–4):243–62. doi:10.1016/0301-7516(91)90056-O.
  • Aldrich, C. 2013. Consumption of steel grinding media in mills–A review. Minerals Engineering 49:77–91. doi:10.1016/j.mineng.2013.04.023.
  • Azizi, A., S. Z. Shafaei, M. Noaparast, and M. Karamoozian. 2013. Galvanic interaction between chalcopyrite and pyrite with low alloy and high carbon chromium steel ball. Journal of Chemistry 2013:1–9. doi:10.1155/2013/817218.
  • Baláž, P., L. Takacs, E. Boldižárová, and E. Godočı́ková. 2003. Mechanochemical transformations and reactivity in copper sulphides. Journal of Physics and Chemistry of Solids 64:1413–17. doi:10.1016/S0022-3697(03)00189-6.
  • Berglund, G. 1991. Pulp chemistry in sulphide mineral flotation. International Journal of Mineral Processing 33 (1–4):21–31. doi:10.1016/0301-7516(91)90040-P.
  • Bruckard, W. J., G. J. Sparrow, and J. T. Woodcock. 2011. A review of the effects of the grinding environment on the flotation of copper sulphides. International Journal of Mineral Processing 100:1–13. doi:10.1016/j.minpro.2011.04.001.
  • Bu, X., Y. Chen, G. Ma, Y. Sun, C. Ni, and G. Xie. 2019. Differences in dry and wet grinding with a high solid concentration of coking coal using a laboratory conical ball mill: Breakage rate, morphological characterization, and induction time. Advanced Powder Technology 30:2703–11. doi:10.1016/j.apt.2019.08.016.
  • Camalan, M., and Ç. Hoşten. 2015. Ball-mill grinding kinetics of cement clinker comminuted in the high-pressure roll mill. Mineral Processing and Extractive Metallurgy Review 36 (5):310–16. doi:10.1080/08827508.2015.1004402.
  • Casagrande, C., T. Alvarenga, and S. Pessanha. 2017. Study of iron ore mixtures behavior in the grinding pelletizing process. Mineral Processing and Extractive Metallurgy Review 38 (1):30–35. doi:10.1080/08827508.2016.1244058.
  • Celep, O., A. D. Bas, E. Y. Yazici, İ. Alp, and H. Deveci. 2015. Improvement of silver extraction by ultrafine grinding prior to cyanide leaching of the plant tailings of a refractory silver ore. Mineral Processing and Extractive Metallurgy Review 36 (4):227–36. doi:10.1080/08827508.2014.928621.
  • Chelgani, S. C., M. Parian, P. S. Parapari, Y. Ghorbani, and J. Rosenkranz. 2019. A comparative study on the effects of dry and wet grinding on mineral flotation separation–A review. Journal of Materials Research and Technology 8 (5):5004–11. doi:10.1016/j.jmrt.2019.07.053.
  • Chen, X., Y. Peng, and D. Bradshaw. 2013. Effect of regrinding conditions on pyrite flotation in the presence of copper ions. International Journal of Mineral Processing 125:129–36. doi:10.1016/j.minpro.2013.08.007.
  • Cheng, X., and I. Iwasaki. 1992. Pulp potential and its implications to sulfide flotation. Mineral Processing and Extractive Metallurgy Review 11 (4):187–210. doi:10.1080/08827509208914206.
  • Corin, K. C., Z. G. Song, J. G. Wiese, and C. T. O’connor. 2018. Effect of using different grinding media on the flotation of a base metal sulphide ore. Minerals Engineering 126:24–27. doi:10.1016/j.mineng.2018.06.019.
  • Cullinan, V. J., S. R. Grano, C. J. Greet, N. W. Johnson, and J. Ralston. 1999. Investigating fine galena recovery problems in the lead circuit of Mount Isa Mines Lead/Zinc Concentrator part 1: Grinding media effects. Minerals Engineering 12 (2):147–63. doi:10.1016/S0892-6875(98)00128-9.
  • Debernardi, G., and C. Carlesi. 2013. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Mineral Processing and Extractive Metallurgy Review 34 (1):10–41. doi:10.1080/08827508.2011.623745.
  • Díaz, E., L. Voisin, W. Kracht, and V. Montenegro. 2018. Using advanced mineral characterisation techniques to estimate grinding media consumption at laboratory scale. Minerals Engineering 121:180–88. doi:10.1016/j.mineng.2018.03.015.
  • Feng, D., and C. Aldrich. 2000. A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding. International Journal of Mineral Processing 60 (2):115–29. doi:10.1016/S0301-7516(00)00010-7.
  • Fontana, M. G., and N. D. Greene. 1978. Materials science and engineering series. New York, USA: McGraw-Hill Inc.
  • Forssberg, E., S. Sundberg, and Z. Hongxin. 1988. Influence of different grinding methods on floatability. International Journal of Mineral Processing 22:183–92. doi:10.1016/0301-7516(88)90063-4.
  • Forssberg, K. E. 1991. Flotation of sulphide minerals. Amsterdam: Elsevier.
  • Freeman, W. A., R. Newell, and K. B. Quast. 2000. Effect of grinding media and NaHS on copper recovery at Northparkes Mines. Minerals Engineering 13 (13):1395–403. doi:10.1016/S0892-6875(00)00121-7.
  • Gao, Y. S., Z. Y. Gao, and W. Sun. 2017. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism. The Chinese Journal of Nonferrous Metals 27 (4):859–68. (in Chinese).
  • Göktepe, F. 2010. Effect of H2O2 and nash addition to change the electrochemical potential in flotation of chalcopyrite and pyrite minerals. Mineral Processing & Extractive Metallurgy Review 32 (1):24–29. doi:10.1080/08827508.2010.509677.
  • Gonçalves, K. L. D. C., V. L. L. D. Andrade, and A. E. C. Peres. 2003. The effect of grinding conditions on the flotation of a sulphide copper ore. Minerals Engineering 16 (11):1213–16. doi:10.1016/j.mineng.2003.05.006.
  • Gopal, A. V., and P. V. Rao. 2002. Modeling of grinding of silicon carbide with diamond wheels. Mineral Processing and Extractive Metallurgy Review 23 (1):51–63. doi:10.1080/08827500214517.
  • Grano, S., 2010, “Chemical measurements during plant surveys and their interpretation.” The Australasian Institute of Mining and Metallurgy, Melbourne. pp. 107–22.
  • Greet, C., F. Hao, W. J. Bruckard, and K. J. Davey. 2008a. On-line monitoring of xanthate and cyanide levels during batch grinding tests on a nickel sulphide ore. In Proceedings 24th international mineral processing congress, ed. W. D. Zuo, S. C. Yao, W. F. Liang, Z. L. Cheng, and H. Long, Vol. 2, 2294–304. Beijing: Science Press.
  • Greet, C. J. 2009. The significance of grinding environment on the flotation of UG2 ores. Journal of the Southern African Institute of Mining and Metallurgy 109 (1):31–37.
  • Greet, C. J., W. J. Bruckard, and D. MacKay. 2010. Collector–Addition point and consumption. Mineral Processing and Extractive Metallurgy 119 (4):235–41. doi:10.1179/037195510X12843862943667.
  • Greet, C. J., G. L. Small, P. Steinier, and S. R. Grano. 2004. The Magotteaux Mill: Investigating the effect of grinding media on pulp chemistry and flotation performance. Minerals Engineering 17 (7–8):891–96. doi:10.1016/j.mineng.2004.03.003.
  • Greet, C. J., and A. Van Den Bosch, 2014, “The use of high chromium content grinding media in the mining industry.” In: Proceeding XXVII International Mineral Processing Congress, Santiago, Chile.
  • Gu, G., and S. J. Zhong. 2008. Electrochemical properties on surface of galena in grinding system and its influence on flotation. Journal of Central South University (Science and Technology) 9:54–58. (in Chinese).
  • Guven, O., and M. S. Çelik. 2016. Interplay of particle shape and surface roughness to reach maximum flotation efficiencies depending on collector concentration. Mineral Processing and Extractive Metallurgy Review 37 (6):412–17. doi:10.1080/08827508.2016.1218873.
  • Guy, P., and W. Trahar. 1984. The influence of grinding and flotation environments on the laboratory batch flotation of galena. International Journal of Mineral Processing 12:15–38. doi:10.1016/0301-7516(84)90020-6.
  • Hadizadeh, M., A. Farzanegan, and M. Noaparast. 2017. Supervisory fuzzy expert controller for SAG mill grinding circuits: Sungun copper concentrator. Mineral Processing and Extractive Metallurgy Review 38 (3):168–79. doi:10.1080/08827508.2017.1281133.
  • Harris, C. C., and N. Arbiter. 1985b. Grinding mill operation and scale-up: Theory and equations. Mineral Processing and Extractive Metallurgy Review 1 (3–4):249–63. doi:10.1080/08827508508952594.
  • Harris, C. C., E. M. Schnock, and N. Arbiter. 1985a. Grinding mill power consumption. Mineral Processing and Extractive Metallurgy Review 1 (3–4):297–345. doi:10.1080/08827508508952596.
  • He, F., L. Song, and C. Sun, 2010, “Effects of grinding media on the flotation of sulfide minerals.” XXV International Mineral Processing Congress (IMPC), Australia. pp. 1945–57.
  • He, F., C. Sun, and L. Song. 2006a. Influence of grinding environment on flotation of sulfide minerals. Engineering Science 8:92–102. (in Chinese).
  • He, F., C. Sun, and L. Song. 2006b. Effects of grinding media on surface properties and flotation behaviour of galena. Nonferrous Metals (Mineral Processing) 58:81–85. (in Chinese).
  • Heyes, G. W., and W. J. Trahar. 1979. Oxidation–Reduction effects in the flotation of chalcocite and cuprite. International Journal of Mineral Processing 6 (3):229–52. doi:10.1016/0301-7516(79)90039-5.
  • Hicyilmaz, C., U. Ulusoy, S. Bilgen, and M. Yekeler. 2005. Flotation responses to the morphological properties of particles measured with three-dimensional approach. International Journal of Mineral Processing 75 (3–4):229–36. doi:10.1016/j.minpro.2004.08.019.
  • Hintikka, V. V., R. P. Kalapudas, and P. I. Viitanen. 2000. Effect of rheology of grinding efficiency in the laboratory scale continuous classifying mill. Mineral Processing and Extractive Metallurgy Review 20 (1):133–54. doi:10.1080/08827509908962468.
  • Houot, R., and D. Duhamet. 1990. Importance of oxygenation of pulps in the flotation of sulfide ores. International Journal of Mineral Processing 29 (1–2):77–87. doi:10.1016/0301-7516(90)90006-K.
  • Hu, Y., W. Sun, and D. Wang. 2009. Mechano-electrochemical behavior of flotation of sulfide minerals. In Electrochemistry of flotation of sulfide minerals, 201–18. Berlin, Heidelberg: Springer.
  • Huang, G., and S. Grano. 2006. Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part I. Quantifying galvanic interaction during grinding. International Journal of Mineral Processing 78 (3):182–97. doi:10.1016/j.minpro.2005.10.008.
  • Huang, G., S. Grano, and W. Skinner. 2006. Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part II. Effect of grinding on flotation. International Journal of Mineral Processing 78 (3):198–213. doi:10.1016/j.minpro.2005.10.009.
  • Jacques, S., C. J. Greet, and D. Bastin. 2016. Oxidative weathering of a copper sulphide ore and its influence on pulp chemistry and flotation. Minerals Engineering 99:52–59. doi:10.1016/j.mineng.2016.09.023.
  • Jankovic, A. 2003. Variables affecting the fine grinding of minerals using stirred mills. Minerals Engineering 16 (4):337–45. doi:10.1016/S0892-6875(03)00007-4.
  • Javad Koleini, S. M., K. Barani, and B. Rezaei. 2012. The effect of microwave treatment on dry grinding kinetics of iron ore. Mineral Processing and Extractive Metallurgy Review 33 (3):159–69. doi:10.1080/08827508.2011.562947.
  • Jones, M. H., and J. T. Woodcock. 1978. Perxanthates-a new factor in the theory and practice of flotation. International Journal of Mineral Processing 5 (3):285–96. doi:10.1016/0301-7516(78)90024-8.
  • Kalapudas, R., J. Leppinen, K. Heiskanen, and P. Koivistoinen. 2000. Effect of grinding methods on flotation of sulfide ores. In Proceedings XXI International Mineral procesSing Congress, Rome, Vol. A, Section A4, ed. P. Massacci, 104–11. Amsterdam: Elsevier.
  • Kelebek, S., and S. Yoruk. 2002. Bubble contact angle variation of sulphide minerals in relation to their self-induced flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 196 (2–3):111–19. doi:10.1016/S0927-7757(01)00822-6.
  • Kinal, J., C. Greet, and I. Goode. 2009. Effect of grinding media on zinc depression in a lead cleaner circuit. Minerals Engineering 22 (9–10):759–65. doi:10.1016/j.mineng.2009.01.010.
  • Kocabag, D., and M. R. Smith. 1985. The effect of grinding media and galvanic interactions upon the flotation of sulfide minerals. In Complex sulfides–processing of ores, concentrates and by-products, ed. A. D. Zunkel, et al., 55–81. Indialantic, FL: WBD.
  • Kuopanportti, H., T. Suorsa, and E. Pollanen. 1997. Effects of oxygen on kinetics of conditioning in sulphide ore flotation. Minerals Engineering 10 (11):1193–205. doi:10.1016/S0892-6875(97)00106-4.
  • Lamia, B., and B. Mouhamed. 2017. Reprocessing and environmental desulphurization of sulphide mining waste from sphalerite flotation: Case of Chaabet El Hamra mine. World Journal of Engineering 14:42–46. doi:10.1108/WJE-11-2016-0128.
  • Learmont, M. E., and I. Iwasaki. 1984. Effect of grinding media on galena flotation. Mining, Metallurgy & Exploration 1 (2):136–43. doi:10.1007/BF03402566.
  • Leppinen, J. O., V. V. Hintikka, and R. P. Kalapudas. 1998. Effect of electrochemical control on selective flotation of copper and zinc from complex ores. Minerals Engineering 11 (1):39–51. doi:10.1016/S0892-6875(97)00137-4.
  • Li, X., and I. Iwasaki. 1992. Effect of cathodic polarization on the floatability of chalcopyrite in the absence of oxygen. Minerals and Metallurgical Processing 9 (1):1–6.
  • Li, Z., F. Rao, M. A. Corona-Arroyo, A. Bedolla-Jacuinde, and S. Song. 2019. Comminution effect on surface roughness and flotation behavior of malachite particles. Minerals Engineering 132:1–7. doi:10.1016/j.mineng.2018.11.056.
  • Ma, B., and J. Liu. 2016. Research of effect of the particle size composition of grinding product on the flotation of lead. Nonferrous Metals 2:29–33. (in Chinese).
  • Martin, C. J., R. E. McIvor, J. A. Finch, and S. R. Rao. 1991. Review of the effect of grinding media on flotation of sulphide minerals. Minerals Engineering 4 (2):121–32. doi:10.1016/0892-6875(91)90028-T.
  • Moslemi, H., and M. Gharabaghi. 2017. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry 47:1–18. doi:10.1016/j.jiec.2016.12.012.
  • Nakazawa, H., and I. Iwasaki. 1986. Galvanic contact between nickel arsenide and pyrrhotite and its effect on flotation. International Journal of Mineral Processing 18 (3–4):203–15. doi:10.1016/0301-7516(86)90018-9.
  • Nie, M., Y. Han, and Y. Li. 2019. Effects of grinding media on the flotation behaviors of sphalerite. Metal Mine 512:163–67. (in Chinese).
  • Orumwense, O. A., and E. Forssberg. 1992. Superfine and ultrafine grinding-a literature survey. Mineral Processing and Extractive Metallurgy Review 11 (1–2):107–27. doi:10.1080/08827509208914216.
  • Owusu, C., J. Addai-Mensah, D. Fornasiero, and M. Zanin. 2013. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour. Advanced Powder Technology 24 (4):801–09. doi:10.1016/j.apt.2013.05.006.
  • Peng, H., D. Wu, and M. Abdelmonem. 2017. Flotation performances and surface properties of chalcopyrite with xanthate collector added before and after grinding. Results in Physics 7:3567–73. doi:10.1016/j.rinp.2017.09.028.
  • Peng, Y., and S. Grano. 2010a. Effect of grinding media on the activation of pyrite flotation. Minerals Engineering 23 (8):600–05. doi:10.1016/j.mineng.2010.02.003.
  • Peng, Y., and S. Grano. 2010b. Effect of iron contamination from grinding media on the flotation of sulphide minerals of different particle size. International Journal of Mineral Processing 97 (1–4):1–6. doi:10.1016/j.minpro.2010.07.003.
  • Peng, Y., and S. Grano. 2010c. Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides. Electrochimica Acta 55 (19):5470–77. doi:10.1016/j.electacta.2010.04.097.
  • Peng, Y., S. Grano, D. Fornasiero, and J. Ralston. 2003. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. International Journal of Mineral Processing 69 (1–4):87–100. doi:10.1016/S0301-7516(02)00119-9.
  • Peng, Y., S. Grano, J. Ralston, and D. Fornasiero. 2002. Towards prediction of oxidation during grinding I. Galena flotation. Minerals Engineering 15:493–98. doi:10.1016/S0892-6875(02)00062-6.
  • Perek, K. T., and F. Arslan. 2010. Effect of mechanical activation on pressure leaching of Küre Massive rich copper ore. Mineral Processing & Extractive Metallurgy Review 31 (4):191–200. doi:10.1080/08827508.2010.483358.
  • Pourghahramani, P., and E. Forssberg. 2005a. Review of applied particle shape descriptors and produced particle shapes in grinding environments. Part I: Particle shape descriptors. Mineral Processing and Extractive Metallurgy Review 26 (2):145–66. doi:10.1080/08827500590912095.
  • Pourghahramani, P., and E. Forssberg. 2005b. Review of applied particle shape descriptors and produced particle shapes in grinding environments. part II: The influence of comminution on the particle shape. Mineral Processing and Extractive Metallurgy Review 26 (2):167–86. doi:10.1080/08827500590912103.
  • Rabieh, A., B. Albijanic, and J. J. Eksteen. 2016. A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations. Minerals Engineering 94:21–28. doi:10.1016/j.mineng.2016.04.012.
  • Rabieh, A., B. Albijanic, and J. J. Eksteen. 2017. Influence of grinding media and water quality on flotation performance of gold bearing pyrite. Minerals Engineering 112:68–76. doi:10.1016/j.mineng.2017.07.010.
  • Rabieh, A., J. J. Eksteen, and B. Albijanic. 2018. Galvanic interaction of grinding media with arsenopyrite and pyrite and its effect on gold cyanide leaching. Minerals Engineering 116:46–55. doi:10.1016/j.mineng.2017.10.018.
  • Rajagopal, V., and I. Iwasaki. 1992. The properties and performance of cast iron grinding media. Mineral Processing and Extractive Metallurgy Review 11 (1–2):75–106. doi:10.1080/08827509208914215.
  • Richardson, P. E., Z. Chen, D. P. Tao, and R. H. Yoon. 1996. Electrochemical control of pyrite activation by copper. Electrochemistry in Mineral and Metal Processing 4:179–90.
  • Senior, G. D., and W. J. Trahar. 1991. The influence of metal hydroxides and collector on the flotation of chalcopyrite. International Journal of Mineral Processing 33 (1–4):321–41. doi:10.1016/0301-7516(91)90061-M.
  • Singh, V., P. Dixit, R. Venugopal, and K. B. Venkatesh. 2019. Ore pretreatment methods for grinding: Journey and prospects. Mineral Processing and Extractive Metallurgy Review 40 (1):1–15. doi:10.1080/08827508.2018.1479697.
  • Song, L., F. He, C. Sun, and Z. Sun. 2007. Effects of grinding media on surface properties and flotation behaviour of pyrite. Nonferrous Metals (Mineral Processing) 1:30–34. (in Chinese).
  • Song, Z., K. Corin, J. G. Wiese, and C. T. O. Connor. 2017. Effect of grinding medium type and collector addition site on flotation of a Cu-Ni sulphide ore. Conservation and Utilization of Mineral Resources 6:36–40. (in Chinese).
  • Subrahmanyam, T. V., and K. S. E. Forssberg. 1993. Mineral solution-interface chemistry in minerals engineering. Minerals Engineering 6 (5):439–54. doi:10.1016/0892-6875(93)90173-K.
  • Wang, X., and Y. Xie. 1990. The effect of grinding media and environment on the surface properties and flotation behaviour of sulfide minerals. Mineral Processing and Extractive Metallurgy Review 7 (1):49–79. doi:10.1080/08827509008952666.
  • Wei, Y., and R. F. Sandenbergh. 2007. Effects of grinding environment on the flotation of Rosh Pinah complex Pb/Zn ore. Minerals Engineering 20 (3):264–72. doi:10.1016/j.mineng.2006.09.010.
  • Weiss, N. L. 1985. SME mineral processing handbook. Chapter 3. New York: SME.
  • Yelloji Rao, M. K., and K. A. Natarajan. 1991. Factors influencing ball wear and flotation with respect to ore grinding. Mineral Processing and Extractive Metallurgy Review 7 (3–4):137–73. doi:10.1080/08827509108952670.
  • You, X., L. Li, and X. Lyu. 2017. Flotation of molybdenite in the presence of microemulsified collector. Physicochem. Probl. Mineral Process 53:333–40.
  • Zhang, X., Y. Han, P. Gao, and Y. Li. 2020. Effects of grinding media on grinding products and flotation performance of chalcopyrite. Minerals Engineering 145:106070. doi:10.1016/j.mineng.2019.106070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.