317
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Energy Optimization Studies for Integrated Steel Plant Employing Diverse Steel-Making Route: Models and Evolutionary Algorithms-Based Approach

, & ORCID Icon

References

  • Assis, P. S., L. Guo, J. Fang, T. R. Mankhand, and C. F. de Assis. 2008. Optimisation of COREX process. Ironmaking & Steelmaking 35 (4):303–07. doi:10.1179/174328108X269478.
  • Bale, C. W., E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, et al. 2016. FactSage thermochemical software and databases - 2010 – 2016. Calphad 54:35–53. doi:10.1016/j.calphad.2016.05.002.
  • Basu, P., U. Syamaprasad, A. K. Jouhari, and H. S. Ray. 1993. Smelting reduction technologies for direct ironmaking. Mineral Processing and Extractive Metallurgy Review 12 (2–4):223–55. doi:10.1080/08827509508935259.
  • Chakraborti, N. 2016. Data-driven bi-objective genetic algorithms EvoNN and BioGP and their applications in metallurgical and materials domain. In Computational approaches to materials design: theoretical and practical aspects, ed. S. Datta and J. P. Davim, 346–68. US: IGI Global.
  • Colla, V., R. Valentini, B. Fornai, and A. Amato. 2016. Comparison of different alternative steel technologies: Evaluation of case studies for an innovative and sustainable steelwork. Metallurgical Research & Technology 113 (4):401. doi:10.1051/metal/2016016.
  • De Beer, J., E. Worrell, and K. Blok. 1998. Future technologies for energy-efficient iron and steel making. Annual Review of Energy and the Environment 23 (1):123–205. doi:10.1146/annurev.energy.23.1.123.
  • Fruehan, R. J., O. Fortini, H. W. Paxton, and R. Brindle. 2000. Theoretical minimum energies to produce steel for selected conditions. U.S. Department of Energy. Accessed November 2019. https://www.energy.gov/sites/prod/files/2013/11/f4/theoretical_minimum_energies.pdf
  • Giri, B. K., J. Hakanen, K. Miettinen, and N. Chakraborti. 2013a. Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Applied Soft Computing 13 (5):2613–23. doi:10.1016/j.asoc.2012.11.025.
  • Giri, B. K., F. Pettersson, H. Saxén, and N. Chakraborti. 2013b. Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace. Materials and Manufacturing Processes 28 (7):776–82. doi:10.1080/10426914.2013.763953.
  • Gordon, Y., S. Kumar, M. Freislich, and Y. Yaroshenko. 2015. The modern technology of iron and steel production and possible ways of their development. Steel in Translation 45 (9):627–34. doi:10.3103/S0967091215090077.
  • International Energy Agency. Sankey. Accessed November 2019. https://www.iea.org/Sankey/index.html
  • Kong, H., E. Qi, H. Li, G. Li, and X. Zhang. 2010. An MILP model for optimization of byproduct gases in the integrated iron and steel plant. Applied Energy 87 (7):2156–63. doi:10.1016/j.apenergy.2009.11.031.
  • Kunitomo, K., Y. Takamoto, Y. Fujiwara, and T. Onuma 2006. Blast furnace ironmaking process using pre-reduced iron ore. NIPPON steel Technical Report No. 94.
  • Larsson, M., C. Wang, and J. Dahl. 2006. Development of a method for analysing energy, environmental and economic efficiency for an integrated steel plant. Applied Thermal Engineering 26 (13):1353–61. doi:10.1016/j.applthermaleng.2005.05.025.
  • Li, X., W. Sun, L. Zhao, and J. Cai. 2018. Material metabolism and environmental emissions of BF-BOF and EAF steel production routes. Mineral Processing and Extractive Metallurgy Review 39 (1):50–58. doi:10.1080/08827508.2017.1324440.
  • Maddaloni, A., G. F. Porzio, G. Nastasi, V. Colla, and T. A. Branca. 2015. Multi-objective optimization applied to retrofit analysis: A case study for the iron and steel industry. Applied Thermal Engineering 91:638–46. doi:10.1016/j.applthermaleng.2015.08.051.
  • Mahanta, B. K., and N. Chakraborti. 2019. Tri-objective optimization of noisy dataset in blast furnace iron-making process using evolutionary algorithms. Materials and Manufacturing Processes Forthcoming 1–10. doi:10.1080/10426914.2019.1643472.
  • Miettinen, K. 1998. Nonlinear multiobjective optimization. New York: Springer Science & Business Media.
  • Parul, K., G. G. Roy, and P. K. Sen. 2020. Modelling of BOF/electric steel making process for energy optimization. Steel Tech 14:20–25.
  • Pettersson, F., N. Chakraborti, and H. Saxén. 2007. A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Applied Soft Computing 7 (1):387–97. doi:10.1016/j.asoc.2005.09.001.
  • Pettersson, F., H. Saxén, and K. Deb. 2009. Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace. Materials and Manufacturing Processes 24 (3):343–49. doi:10.1080/10426910802679485.
  • Porzio, G. F., B. Fornai, A. Amato, N. Matarese, M. Vannucci, L. Chiappelli, and V. Colla. 2013. Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems–An example of application to the steel industry. Applied Energy 112:818–33. doi:10.1016/j.apenergy.2013.05.005.
  • Porzio, G. F., G. Nastasi, V. Colla, M. Vannucci, and T. A. Branca. 2014. Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork. Applied Energy 136:1085–97. doi:10.1016/j.apenergy.2014.06.086.
  • Roy, S., B. Saini, D. Chakrabarti, and N. Chakraborti. 2019. Mechanical properties of micro-alloyed steels studied using a evolutionary deep neural network. Materials and Manufacturing Processes Forthcoming. doi:10.1080/10426914.2019.1660786.
  • Sarkar, S. 2018. An analysis of natural gas injection in coal injected blast furnaces: effect on blast furnace and integral plant emissions and energy.M. Tech. Thesis., Department of Metallurgical & Materials Engineering, Indian Institute of Technology Kharagpur.
  • SIEMENS VAI. SIMETAL corex technology. Accessed November 2019. https://web.archive.org/web/20130626115250/
  • Song, J., Z. Jiang, C. Bao, and A. Xu. 2019. Comparison of energy consumption and CO2 emission for three steel production routes—Integrated steel plant equipped with blast furnace, oxygen blast furnace or COREX. Metals 9 (3):364. doi:10.3390/met9030364.
  • World Steel Association. Steel facts. Accessed November 2019. https://www.worldsteel.org/en/dam/jcr:ab8be93e-1d2f-4215-9143-4eba6808bf03/20190207_steelFacts.pdf
  • Worrell, E., L. Price, M. Neelis, C. Galitsky, and N. Zhou 2007. World best practice energy intensity values for selected industrial sectors. Lawrence Berkeley National Laboratory. Accessed November 2019. https://escholarship.org/content/qt77n9d4sp/qt77n9d4sp.pdf
  • Yamaguchi, K., H. Ueno, S. I. Matsunaga, K. Kakiuchi, and S. Amano. 1995. Test on high-rate pulverized coal injection operation at Kimitsu No. 3 blast furnace. ISIJ International 35 (2):148–55. doi:10.2355/isijinternational.35.148.
  • Yilmaz, C., and T. Turek. 2017. Modeling and simulation of the use of direct reduced iron in a blast furnace to reduce carbon dioxide emissions. Journal of Cleaner Production 164:1519–30. doi:10.1016/j.jclepro.2017.07.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.