1,704
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Research Status of Spodumene Flotation: A Review

, , , , &

References

  • Bale, M. D., and A. V. May. 1989. Processing of ores to produce tantalum and lithium. Minerals Engineering 2 (3):299–320. doi:https://doi.org/10.1016/0892-6875(89)90001-0.
  • Bulatovic, S. M. 2010. Handbook of flotation reagents: Chemistry, theory and practice. Amsterdam: Elsevier Science.
  • Cao, J., Y. Zhou, X. Sun, and J. Zhang. 2018. Preparation of high temperature negative expansion micro-nano powder with (beta)-eucryptite structure involves using natural spodumene ore, lithium carbonate and alumina as raw material, grinding, pouring into solvent and mixing. Derwent Innovations Index 2018–795848.
  • Cao, M., Y. D. Gao, H. Bu, and X. Y. Qiu. 2019. Study on the mechanism and application of rutile flotation with benzohydroxamic acid. Minerals Engineering 134:275–80.
  • Cao, S. M., Y. J. Cao, Z. L. Ma, Y. F. Liao, and X. L. Zhang. 2020. Structural and electronic properties of bastnaesite and implications for surface reactions in flotation. Journal of Rare Earths 38:332–38.
  • Chen, J.-H., Y. Chen, and Y.-Q. Li. 2010. Quantum-mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface. Transactions of Nonferrous Metals Society of China 20:1121–30.
  • Filippov, L., S. Farrokhpay, L. Lyo, and I. Filippova. 2019. Spodumene flotation mechanism. Minerals 9:372.
  • Gao, J., Y. Hu, W. Sun, R. Liu, Z. Gao, H. Han, F. Lyu, and W. Jiang. 2019a. Enhanced separation of fluorite from calcite in acidic condition. Minerals Engineering 133:103–05.
  • Gao, Z. Y., R. Y. Fan, J. Ralston, W. Sun, and Y. H. Hu. 2019b. Surface broken bonds: An efficient way to assess the surface behaviour of fluorite. Minerals Engineering 130:15–23.
  • Gao, Z.-Y., W. Sun, and Y.-H. Hu. 2014. Mineral cleavage nature and surface energy: Anisotropic surface broken bonds consideration. Transactions of Nonferrous Metals Society of China 24:2930–37.
  • Gao, Z.-Y., W. Sun, Y.-H. Hu, and X.-W. Liu. 2013. Surface energies and appearances of commonly exposed surfaces of scheelite crystal. Transactions of Nonferrous Metals Society of China 23:2147–52.
  • He, G., W. Jiang, and H. Xiang. 2014a. Research status and prospects of spodumene beneficiation. Mining Research and Development 34:69–73.
  • He, G. C., H. M. Xiang, W. Jiang, Q. Kang, and J. H. Chen. 2014b. First-principles theory on electronic structure and floatability of spodumene. Rare Metals 33:742–48.
  • Hu, Z., and C. Sun. 2019. Effects and mechanism of different grinding media on the flotation behaviors of Beryl and Spodumene. Minerals 9:666.
  • Huang, G., and S. Grano. 2006. Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part I. Quantifying galvanic interaction during grinding. International Journal of Mineral Processing 78:182–97.
  • Jaeger, D., R. Stalder, H. Masago, and M. Strasser. 2019. OH defects in quartz as a provenance tool: Application to fluvial and deep marine sediments from SW Japan. Sedimentary Geology 388:66–80.
  • Jia, L., B. Liang, L. Lü, S. Yuan, L. Zheng, X. Wang, and C. Li. 2014. Beneficiation of titania by sulfuric acid pressure leaching of Panzhihua ilmenite. Hydrometallurgy 150:92–98.
  • Jorjani, E., S. Esmaeili, and M. Tayebi Khorami. 2013. The effect of particle size on coal maceral group’s separation using flotation. Fuel 114:10–15.
  • Kalinko, A., A. Kuzmin, and R. A. Evarestov. 2009. Ab initio study of the electronic and atomic structure of the wolframite-type ZnWO4. Solid State Communications 149:425–28.
  • Karrech, A., M. R. Azadi, M. Elchalakani, M. A. Shahin, and A. C. Seibi. 2020. A review on methods for liberating lithium from pegmatities. Minerals Engineering 145:106085. doi:https://doi.org/10.1016/j.mineng.2019.106085.
  • Katsuhiko Ariga, T. K. 2006. Overview — what is Supramolecular chemistry? In Supramolecular chemistry — fundamentals and applications: Advanced textbook, ed. K. Ariga and T. Kunitake, 867–881. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Kuntzinger, S., S. Dahaoui, and N. E. Ghermani. 1999b. Electron density distribution and Madelung potential in α-spodumene, LiAl(SiO3)2, from two-wavelength high-resolution X-ray diffraction data. Acta crystallographica B55:273–284.
  • Kuntzinger, S., S. Dahaoui, N. E. Ghermani, C. Lecomte, and J. A. K. Howard. 1999a. The use of CCD area detectors in charge-density research. Application to a mineral compound: The α-spodumene LiAl(SiO3)2. Acta Crystallographica Section B 55:867–81.
  • Lehn, J.-M. 1988. Supramolecular chemistry — Scope and perspectives: Molecules — Supermolecules — Molecular devices. Journal of Inclusion Phenomena 6:351–96.
  • Li, H., J. Eksteen, and G. Kuang. 2019. Recovery of lithium from mineral resources: State-of-the-art and perspectives – A review. Hydrometallurgy 189:105–29.
  • Liu, C., W. C. Zhang, S. X. Song, and H. Q. Li. 2019. Study on the activation mechanism of lead ions in wolframite flotation using benzyl hydroxamic acid as the collector. Minerals Engineering 141:105859. doi:https://doi.org/10.1016/j.mineng.2019.105859.
  • Liu, W., S. Zhang, W. Wang, J. Zhang, W. Yan, J. Deng, Q. Feng, and Y. Huang. 2015a. The effects of Ca(II) and Mg(II) ions on the flotation of spodumene using NaOL. Minerals Engineering 79:40–46.
  • Martin, G., C. Pätzold, and M. Bertau. 2017a. Integrated process for lithium recovery from Zinnwaldite. International Journal of Mineral Processing 160:8–15. doi:https://doi.org/10.1016/j.minpro.2017.01.005.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2019. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 1–19. https://doi.org/10.1080/08827508.2019.1668387
  • Meng, Q. Y., Z. T. Yuan, L. Yu, Y. K. Xu, and Y. S. Du. 2018. Study on the activation mechanism of lead ions in the flotation of ilmenite using benzyl hydroxamic acid as collector. Journal of Industrial and Engineering Chemistry 62:209–16.
  • Moon, K. S. 1986. Surface and crystal chemistry of spodumene and its flotation behavior. Diss. Abstr. Int. 46.
  • Moon, K. S., and D. W. Fuerstenau. 2003. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3](2)) from other aluminosilicates. International Journal of Mineral Processing 72:11–24.
  • Noithong, P., P. Pakkong, and K. Naemchanthara. 2013. Color change of spodumene gemstone by electron beam irradiation. Applied Physics and Material Applications Proceedings Paper 77:370. doi:https://doi.org/10.4028/www.scientific.net/AMR.770.370.
  • Peng, Y., and S. Grano. 2010. Effect of iron contamination from grinding media on the flotation of sulphide minerals of different particle size. International Journal of Mineral Processing 97:1–6.
  • Prencipe, M., M. Tribaudino, and F. Nestola. 2003. Charge-density analysis of spodumene (LiAlSi2O6), from ab initio Hartree–Fock calculations. Physics and Chemistry of Minerals 30:606–14.
  • Rai, B., P. Sathish, J. Tanwar, Pradip, K. S. Moon, and D. W. Fuerstenau. 2011. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals. Journal of Colloid and Interface Science 362:510–16.
  • Ruan, Y. Y., Z. Q. Zhang, H. H. Luo, C. Q. Xiao, F. Zhou, and R. Chi. 2018. Effects of metal ions on the flotation of apatite, dolomite and quartz. Minerals 8:12.
  • Salakjani, N. K., P. Singh, and A. N. Nikoloski. 2019. Production of lithium – A literature review part 1: Pretreatment of Spodumene. Mineral Processing and Extractive Metallurgy Review 1–14. https://doi.org/10.1080/08827508.2019.1643343
  • Salis, M. 1995. Lattice defects in natural α-spodumene. Il Nuovo Cimento D 17:649–51.
  • Schneider, A., H. Schmidt, M. Meven, E. Brendler, J. Kirchner, G. Martin, and W. Voigt. 2017. Lithium extraction from the mineral Zinwaldite: Part I: Effect of thermal treatment on properties and structure of Zinnwaldite. Minerals Engineering 111:55–67. doi:https://doi.org/10.1016/j.mineng.2017.05.006.
  • Shan, Z., Y. Deng, J. Liu, F. Shi, M. Liu, J. Zhou, H. Zhang, C. Wu, and T. Liu. 2020. Effectively promoting the crystallization of lithium disilicate glass-ceramics by free oxygen in the glass. Materials Chemistry and Physics 240:122131. doi:https://doi.org/10.1016/j.matchemphys.2019.122131.
  • Shen, L., J. Zhu, L. Liu, and H. Wang. 2017. Flotation of fine kaolinite using dodecylamine chloride/fatty acids mixture as collector. Powder Technology 312:159–65.
  • Sitando, O., and P. L. Crouse. 2012. Processing of a Zimbabwean petalite to obtain lithium carbonate. International Journal of Mineral Processing 102–103:45–50. doi:https://doi.org/10.1016/j.minpro.2011.09.014.
  • Smith, R. W., and S. G. Allard. 1983. Effects of pretreatment and aging on chromite flotation. International Journal of Mineral Processing 11:163–74.
  • Song, Z., Y. Liang, M. Fan, F. Zhou, and W. Liu. 2014. Lithium-based ionic liquids functionalized by sym-triazine and cyclotriphosphazene as high temperature lubricants. Tribology International 70:136–41.
  • Statista, 2018, www.statista.com/statistics/452025/projected-totaldemand-for-lithium-globally
  • Syverson, D. D., B. Etschmann, W. H. Liu, R. Ram, Y. Mei, T. Lanzirotti, J. Mercadier, and J. Brugger. 2019. Oxidation state and coordination environment of Pb in U-bearing minerals. Geochimica et cosmochimica acta 265:109–31.
  • Tadesse, B., F. Makuei, B. Albijanic, and L. Dyer. 2019. The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering 131:170–84.
  • Tian, J., L. H. Xu, H. Q. Wu, S. Fang, W. Deng, T. F. Peng, W. Sun, and Y. H. Hu. 2018a. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. Journal of Cleaner Production 174:625–33.
  • Tian, J., L. H. Xu, W. Deng, H. Jiang, Z. Y. Gao, and Y. H. Hu. 2017. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chemical Engineering Science 164:99–107.
  • Tian, M., Z. Gao, S. A. Khoso, W. Sun, and Y. Hu. 2019. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations. Minerals Engineering 143:106006. doi:https://doi.org/10.1016/j.mineng.2019.106006.
  • Tian, M. J., R. Q. Liu, Z. Y. Gao, P. Chen, H. S. Han, L. Wang, C. Y. Zhang, W. Sun, and Y. H. Hu. 2018b. Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Minerals Engineering 119:31–37.
  • USGS. 2020. Mineral commodity summaries 2020. U.S. Geological Survey:99.
  • Vidyadhar, A., and K. Hanumantha Rao. 2007. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system. Journal of Colloid and Interface Science 306:195–204.
  • Vieceli, N., C. A. Nogueira, M. F. C. Pereira, F. O. Durão, C. Guimarães, and F. Margarido. 2017. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates. Mineral Processing and Extractive Metallurgy Review 38:62–72.
  • Vizcarra, T. G., S. L. Harmer, E. M. Wightman, N. W. Johnson, and E. V. Manlapig. 2011. The influence of particle shape properties and associated surface chemistry on the flotation kinetics of chalcopyrite. Minerals Engineering 24:807–16.
  • Wang, F., T. Yu, and J. Chen. 2020. Biaxial flexural strength and translucent characteristics of dental lithium disilicate glass ceramics with different translucencies. Journal of Prosthodontic Research 64:71–77.
  • Wang, H. N., H. Z. Zhu, J. B. Zhu, J. J. Tang, D. Q. Huang, and S. M. Shao. 2019. Optimizing oxidized coal flotation through pH adjustment and inorganic salt ion. International Journal of Coal Preparation and Utilization 1–9. doi:https://doi.org/10.1080/19392699.2019.1648262.
  • Wang, L., Y. Hu, J. Liu, Y. Sun, and W. Sun. 2015. Flotation and adsorption of muscovite using mixed cationic–nonionic surfactants as collector. Powder Technology 276:26–33.
  • Wang, Y. H., and F. S. Yu. 2007. Effects of metallic ions on the flotation of Spodumene and Beryl. Journal of China University of Mining and Technology 17:35–39.
  • Wang, Y. H., G. L. Zhu, F. S. Yu, D. F. Lu, L. G. Wang, Y. H. Zhao, and H. T. Zheng. 2018a. Improving spodumene flotation using a mixed cationic and anionic collector. Physicochemical Problems of Mineral Processing 54:567–77.
  • Wang, Y. H., G. L. Zhu, L. Zhang, D. F. Lu, L. G. Wang, Y. H. Zhao, and H. T. Zheng. 2018b. Surface dissolution of spodumene and its role in the flotation concentration of a spodumene ore. Minerals Engineering 125:120–25.
  • Wu, H., J. Tian, L. Xu, S. Fang, Z. Zhang, and R. Chi. 2018. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Minerals Engineering 127:42–47.
  • Xia, W., Y. Li, and A. V. Nguyen. 2018. Improving coal flotation using the mixture of candle soot and hydrocarbon oil as a novel flotation collector. Journal of Cleaner Production 195:1183–89.
  • Xiao, F., K. Q. Wang, W. S. Hou, and O. Erten. 2020. Identifying geochemical anomaly through spatially anisotropic singularity mapping: A case study from silver-gold deposit in Pangxidong district, SE China. Journal of Geochemical Exploration 210:106453. doi:https://doi.org/10.1016/j.gexplo.2019.106453.
  • Xie, R., Y. Zhu, J. Liu, X. Wang, and Y. Li. 2020b. Differential collecting performance of a new complex of decyloxy-propyl-amine and α-bromododecanoic acid on flotation of spodumene and feldspar. Minerals Engineering 153:106377. doi:https://doi.org/10.1016/j.mineng.2020.106377.
  • Xie, R., Y. Zhu, Y. Li, and Y. Han. 2020a. Flotation behavior and mechanism of a new mixed collector on separation of spodumene from feldspar. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 124932. doi:https://doi.org/10.1016/j.colsurfa.2020.124932.
  • Xu, L. H., T. F. Peng, J. Tian, Z. Y. Lu, Y. H. Hu, and W. Sun. 2017. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation. Applied Surface Science 426:1005–22.
  • Xu, L. H., Y. H. Hu, H. Q. Wu, J. Tian, J. Liu, Z. Y. Gao, and L. Wang. 2016b. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Separation and Purification Technology 169:33–42.
  • Xu, L. H., Y. H. Hu, J. Tian, H. Q. Wu, Y. H. Yang, X. B. Zeng, Z. Wang, and J. M. Wang. 2016a. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Minerals Engineering 89:84–92.
  • Yan, Q., X. Li, Z. Wang, X. Wu, J. Wang, H. Guo, and W. Peng. 2012. Extraction of lithium from lepidolite by sulfation roasting and water leaching. International Journal of Mineral Processing 110–111:1–5. doi:https://doi.org/10.1016/j.minpro.2012.03.005.
  • Yao, W., M. L. Li, M. Zhang, R. Cui, J. Shi, and J. F. Ning. 2020. Effect of Zn2+ and its addition sequence on flotation separation of scheelite from calcite using water glass. Colloids and Surfaces a-Physicochemical and Engineering Aspects 588:124394. doi:https://doi.org/10.1016/j.colsurfa.2019.124394.
  • Yonghua, D., M. Lishi, L. Ping, and C. Yong. 2017. First-principles calculations of electronic structures and optical, phononic, and thermodynamic properties of monoclinic α-spodumene. Ceramics International 43:6312–21.
  • Yu, F., Y. Wang, J. Wang, and Z. Xie. 2014a. Investigation on different behavior and mechanism of Ca(II) and Fe(III) adsorption on spodumene surface. Physicochemical Problems of Mineral Processing 50:535–50.
  • Yu, F. S., Y. H. Wang, J. M. Wang, Z. F. Xie, and L. Zhang. 2014b. First-principle investigation on mechanism of Ca ion activating flotation of spodumene. Rare Metals 33:358–62.
  • Yu, F. S., Y. H. Wang, and L. Zhang. 2015. Effect of spodumene leaching with sodium hydroxide on its flotation. Physicochemical Problems of Mineral Processing 51:745–54.
  • Zhang, H., J. Liu, Y. Cao, and Y. Wang. 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder Technology 246:658–63.
  • Zhang, J., W. Q. Wang, J. Liu, Y. Huang, Q. M. Feng, and H. Zhao. 2014. Fe(III) as an activator for the flotation of spodumene, albite, and quartz minerals. Minerals Engineering 61:16–22.
  • Zhang, X., Y. Han, P. Gao, Y. Li, and Y. Sun. 2020a. Effects of particle size and ferric hydroxo complex produced by different grinding media on the flotation kinetics of pyrite. Powder Technology 360:1028–36.
  • Zhang, X., Y. Han, and S. K. Kawatra. 2020b. Effects of grinding media on grinding products and flotation performance of sulfide ores. Mineral Processing and Extractive Metallurgy Review 1–12. doi:https://doi.org/10.1080/08827508.2019.1692831.
  • Zhou, H.-P., J. Hu, Y.-B. Zhang, Y.-J. Cao, X.-P. Luo, and X.-K. Tang. 2020. Effectively enhancing recovery of fine spodumene via aggregation flotation. Rare Metals 39:316–26.
  • Zhu, G., Y. Cao, Y. Wang, X. Wang, J. D. Miller, D. Lu, and X. Zheng. 2020a. Surface chemistry features of spodumene with isomorphous substitution. Minerals Engineering 146:106139. doi:https://doi.org/10.1016/j.mineng.2019.106139.
  • Zhu, G., Y. Zhao, X. Zheng, Y. Wang, H. Zheng, and D. Lu. 2020b. Surface features and flotation behaviors of spodumene as influenced by acid and alkali treatments. Applied Surface Science 507:145058. doi:https://doi.org/10.1016/j.apsusc.2019.145058.
  • Zhu, G. L., X. M. Wang, E. Z. Li, Y. H. Wang, and J. D. Miller. 2019a. Wetting characteristics of spodumene surfaces as influenced by collector adsorption. Minerals Engineering 130:117–28.
  • Zhu, G. L., Y. H. Wang, X. M. Wang, F. S. Yu, and J. D. Miller. 2018. States of coadsorption for oleate and dodecylamine at selected spodumene surfaces. Colloids and Surfaces a-Physicochemical and Engineering Aspects 558:313–21.
  • Zhu, G. L., Y. H. Wang, X. M. Wang, J. D. Miller, D. F. Lu, X. Y. Zheng, Y. H. Zhao, and H. T. Zheng. 2019b. Effects of grinding environment and lattice impurities on spodumene flotation. Transactions of Nonferrous Metals Society of China 29:1527–37.
  • Zhu, G. L., Y. H. Wang, X. W. Liu, F. S. Yu, and D. F. Lu. 2015. The cleavage and surface properties of wet and dry ground spodumene and their flotation behavior. Applied Surface Science 357:333–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.