2,495
Views
46
CrossRef citations to date
0
Altmetric
Review

Red Mud: Fundamentals and New Avenues for Utilization

ORCID Icon &

References

  • Abdulvaliyev, R. A., A. Akcil, S. V. Gladyshev, E. A. Tastanov, K. O. Beisembekova, N. K. Akhmadiyeva, and H. Deveci. 2015. Gallium and vanadium extraction from red mud of Turkish alumina refinery plant: Hydrogarnet process. Hydrometallurgy 157:72–77. doi:10.1016/j.hydromet.2015.07.007.
  • Abhilash, A., S. Sinha, M. K. Sinha, and B. D. Pandey. 2014. Extraction of lanthanum and cerium from Indian red mud. International Journal of Mineral Processing 127:70–73. doi:10.1016/j.minpro.2013.12.009.
  • Adamson, A. N., E. J. Bloore, and A. R. Carr. 1963. Basic principles of Bayer process design. exractive metallurgy of aluminum. In The minerals, metals, and materials society, ed. D. Donaldson and B. E. Raahauge, 100–17. Cham: Springer.
  • Agatzini-Leonardou, S., P. Oustadakis, P. E. Tsakiridis, and C. Markopoulos. 2008. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. Journal of Hazardous Materials 157 (2–3):579–86. doi:10.1016/j.jhazmat.2008.01.054.
  • Akcil, A., N. Akhmadiyeva, R. Abdulvaliyev, Abhilash, and P. Meshram. 2018. Overview on extraction and separation of rare earth elements from red mud: Focus on scandium. Mineral Processing and Extractive Metallurgy Review 39 (3):145–51.
  • Alkan, G., B. Xakalashe, B. Yagmurlu, F. Kaussen, and B. Friedrich. 2017. Conditioning of red mud for subsequent titanium and scandium recovery – a conceptual design study. World of Metallurgy 70 (2):84–91.
  • Alkan, G., B. Yagmurlu, S. Cakmakoglu, T. Hertel, S. Kaya, L. Gronen, S. Stopic, and B. Friedrich. 2018. Novel approach for enhanced scandium and titanium leaching efficiency from bauxite residue with suppressed silica gel. Scientific Reports 8:5676.
  • Altundoğan, H. S., S. Altundoğan, F. Tümen, and M. Bildick. 2002. Arsenic adsorption from aqueous solutions by activated red mud. Waste Management 22:357–63.
  • Anameric, B., and S. K. Kawatra. 2006. Laboratory study related to the production and processing of pig iron nuggets. Minerals and Metallurgical Processing 23 (1):52–56.
  • Anameric, B., and S. K. Kawatra. 2007a. Conditions for making direct reduced iron, transition direct reduced iron and pig iron nuggets in a laboratory furnace—Temperature-time transformations. Minerals and Metallurgical Processing 24 (1):41.
  • Anameric, B., and S. K. Kawatra. 2007b. Properties and features of direct reduced iron. Mineral Processing and Extractive Metallurgy Review 28 (1):59–116.
  • Anameric, B., and S. K. Kawatra. 2007c. The Microstructure of the pig iron nuggets. ISIJ International 47 (1):53–61.
  • Anameric, B., and S. K. Kawatra. 2008. Direct iron smelting reduction processes. Mineral Processing and Extractive Metallurgy Review 30 (1):1–51.
  • Anameric, B., K. B. Rundman, and S. K. Kawatra. 2006. Carburization effects on pig iron nugget making. Minerals and Metallurgical Processing 23 (3):139.
  • Archambo, M., and S. K. Kawatra. 2020. Utilization of bauxite residue: Recovering iron values using the iron nugget process. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2020.1720982.
  • Archambo, M., S. K. Valluri, and S. K. Kawatra 2020. Pretreatment of red mud with CO2 for iron recovery.Annual SME conference. Phoenix, AZ. February 23-27.
  • Arnout, L., T. Hertel, L. B. Do Valle, A. Nelis, M. Dormann, T. Karachalios, and Y. Pontikes 2018. Increasing the reactivity of bauxite residue for its use as building material: An alternative thermal activation treatment. 2nd International Bauxite Residue Valorization and Best Practices Conference. Athens, Greece. 7-10/May/2018.
  • Balaram, V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers 10:1285–303.
  • Ballentine, F., M. E. Lewellyn, and S. A. Moffat. 2011. Red mud flocculants used in the Bayer process. In Essential readings in light metals, ed. D. Donaldson and B. E. Raahauge, 425–30. Cham: The Minerals, Metals, and Materials Society. Springer.
  • Balomenos, E., P. Davris, Y. D. Pontikes, D. Panias, and A. Delipaltas 2018. Bauxite residue handling practice and valorisation research in aluminium of Greece. 2nd International Bauxite Residue Valorisation and Best Practices Conference, 29–37. Athens, Greece.
  • Balomenos, E., D. Panias, and I. Paspaliaris. 2011. Energy and exergy analysis of the primary aluminum production processes: A review on current and future sustainability. Mineral Processing and Extractive Metallurgy Review 32 (2):69–89.
  • Barbosa Botelho, A., R. Hungaro Costa, D. Crocce Romano Espinosa, and T. J. A. Soares. 2019. Recovery of scandium by leaching process from Brazilian red mud. In Rare metal technology, ed. G. Azimi, H. Kim, S. Ala, T. Ouchi, N. R. Neelameggham, and A. A. Baba, 73–79. Springer.
  • Bento, N., P. Santos, T. E. Souza, C. Oliveira, and C. Castro. 2016. Composites based on PET and red mud residues as catalyst for organic removal from water. Journal of Hazardous Materials 314:304–11.
  • Bhoi, B., P. Rajput, and C. R. Mishra 2017. Production of green direct reduced iron (DRI) from red mud of Indian origin: A novel concept. Proceedings of 35th International ICSOBA Conference. Hamburg, Germany. 2-5 October 2017.
  • Borra, C. R., B. Blanpain, Y. Pontikes, K. Binnemans, and T. Van Gerven. 2016. Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review. Journal of Sustainable Metallurgy 2:365–86.
  • Borra, C. R., Y. Pontikes, K. Binnemans, and T. Van Gerven. 2015. Leaching of rare earths from bauxite residue (red mud). Minerals Engineering 76:20–27.
  • Bott, R., T. Langeloh, and J. Hahn. 2008. Advanced filtration methods for pregnant liquor purification. In Essential Readings in Light Metals, ed. D. Donaldson and B. E. Raahauge, 444–48. Cham: The Minerals, Metals, and Materials Society. Springer.
  • Chaubal, M. V. 1990. Physical chemistry considerations in aluminum hydroxide precipitation. In Essential readings in light metals, ed. D. Donaldson and B. E. Raahauge, 449–508. Cham: The Minerals, Metals, and Materials Society. Springer.
  • Chun, T. J., D. Q. Zhu, J. Pan, and Z. He. 2014. Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Canadian Metallurgical Quarterly 53 (2):183–89.
  • Cristol, B., and R. Greenhalgh 2018. QAL bauxite residue storage using seawater neutralization. 2nd International Bauxite Residue Valorization and Best Practices Conference. Athens, Greece. 7-10/May/2018.
  • Damayanti, R., and H. Khareunissa. 2016. Composition and characteristics of red mud: A case study on tayan bauxite residue from alumina processing plant at west kalimantan. Indonesian Mining Journal 19:179–90.
  • Das, N., and D. Das. 2013. Recovery of rare earth metals through biosorption: An overview. Journal of Rare Earths 31 (10):933.
  • Davris, P., E. Balomenos, D. Panias, and I. Paspaliaris. 2016. Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 164:125–35.
  • Davris, P., D. Marinos, E. Balomenos, D. Panias, and I. Paspaliiaris 2018 Hydrometallurgical extraction of scandium from bauxite residue based on sulfuric acid process. 2nd International Bauxite Residue Valorization and Best Practices Conference. Athens, Greece. 7-10/May/2018.
  • Deady, E. A., E. Mouchos, K. Goodenough, B. J. Williamson, and F. Wall. 2016. A review of the potential for rare-earth element resources from European red muds: Examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineralogical Magazine 80 (1):43–61.
  • Dimas, D., I. P. Giannopoulou, and D. Panias. 2009. Utilization of alumina red mud for synthesis of inorganic polymeric materials. Mineral Processing and Extractive Metallurgy Review 30 (3):211–39.
  • Ding, W., X. Jun-Hui, P. Yang, S. Si-Yue, and C. Tao. 2019. Iron extraction from red mud using roasting with sodium salt. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2019.1706049
  • Evans, K. 2016. The history, challenges, and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy 2:316–31.
  • Gawu, S. K. Y., E. E. Amissah, and J. S. Kuma. 2012. The proposed alumina industry and how to mitigate against the red mud footprint in Ghana. Journal of Urban and Environmental Engineering 6 (Page):48–56.
  • Glenister, D. J., and T. M. Abbot (1989). Dewatering and dry disposal of fine bauxite residue. Dewatering Practice and Technology. Brisbane, Australia.
  • Gotsu, S., B. Mishra, and G. Martins 2018. Extraction of iron from red mud: Low temperature reduction to magnetite and magnetic separation. 2nd International Bauxite Residue Valorization and Best Practices Conference. Athens, Greece. 7-10//2018.
  • Grafe, M., G. Power, and C. Klauber. 2011. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 108:60–79.
  • Guo, Y., J. Gao, H. Xu, K. Zhou, and X. And Shi. 2013. Nuggets production by direct reduction of high iron red mud. Journal of Iron and Steel Research International 20 (5):24–27.
  • Halmann, M., M. Epstein, and A. Steinfeld. 2012. Vacuum carbothermic reduction of bauxite components: A thermodynamic study. Mineral Processing and Extractive Metallurgy Review 33 (3):190–203.
  • Halmann, M., A. Steinfeld, M. Epstein, and I. Vishnevetsky. 2014. Vacuum Carbothermic reduction of alumina. Mineral Processing and Extractive Metallurgy Review 35 (2):126–35.
  • Hanahan, C., D. McConchie, J. Pohl, R. Creelman, M. Clark, and C. Stocksiek. 2004. Chemistry of seawater neutralization of bauxite refinery residues. Environmental Engineering Science 21 (2):125–38.
  • Hind, A. R., K. B. Suresh, and S. C. Grocott. 1999. The surface chemistry of Bayer process solids: A review. Colloids and Surfaces. A: Physiochemical and Engineering Aspects. 146:359–74.
  • Huang, Y., W. Chai, G. Han, W. Wang, and S. Yang. 2016a. A perspective of stepwise utilization of Bayer red mud: Step two-Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation. Journal of Hazardous Materials 307:318–27.
  • Huang, Y., G. Han, J. Liu, and W. Wang. 2016b. A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics. Journal of Hazardous Materials 301:46–55.
  • Huangfu, L., A. Abubakar, C. Li, Y. Li, C. Wang, S. Gao, Z. Liu, and J. Yu. 2020. Development of red mud coated catalytic filter for NOx removal in the high temperature range of 300–450 °C. Catalysis Letters 150:702–12.
  • Jayasankar, K., P. K. Ray, A. K. Chaubey, A. Padhi, B. K. Satapathy, and P. S. Mukherjee. 2012. Production of pig iron from red mud waste fines using thermal plasma technology. International Journal of Minerals, Metallurgy, and Materials 19 (8):679.
  • Karimi, E., C. Briens, F. Berruti, S. Moloodi, T. Tzanetakis, M. J. Thomson, and M. Schlaf. 2010. Red mud as a catalyst for the upgrading of hemp-seed pyrolysis bio-oil. Energy Fuels 24:6586–600.
  • Kasliwal, P., and P. S. T. Sai. 1999. Enrichment of titanium dioxide in red mud: A kinetic study. Hydrometallurgy 53:73–87.
  • Khairul, M. A., J. Zanganeh, and B. Moghtaderi. 2019. The composition, recycling, and utilization of Bayer red mud. Resources, Conservation, and Recycling 141 (Pages):483–98.
  • Kotte Jan, J. 1981. Bayer digestion and predigestion desilication reactor design. In Essential reading in light metals, ed. D. Donaldson and B. E. Raahauge, 331–49. Cham: The Minerals, Metals, and Materials Society. Springer.
  • Ksiazek, M., E. Ringdalen, P. H. Hogaas, and C. Van Der Eijk 2018. Iron removal from bauxite ores. 2nd International Bauxite Residue Valorization and Best Practices Conference, Athens, Greece. 7-10/May/2018.
  • Kumar, S., and A. Prasad. 2019. Parameters controlling strength of red mud-lime mix. European. Journal of Environmental and Civil Engineering 23 (6):743–57.
  • Kurtoglu, S. F., and A. Uzun. 2016. Red mud as an efficient, stable, and cost-free catalyst for COx-free hydrogen production from ammonia. Scientific Reports 6:32279.
  • Lemougna, P. N., K. T. Wang, Q. Tang, and X. Cui. 2017. Synthesis and characterization of low temperature (<800 C) ceramics from red mud geopolymer precursor. Construction and Building Materials 131:564–73.
  • Li, Y., R. J. Haynes, I. Chandrawana, and Y. Zhou. 2018a. Properties of seawater neutralized bauxite residues and changes in chemical, physical, and microbial properties induced by additions of gypsum and organic matter. Journal of Environmental Management 223 (Page):489–94.
  • Li, Z., Y. Cao, Y. Jiang, G. Han, G. Fan, and L. Chang. 2018b. Removal of potassium and iron in low grade bauxite by a calcination-acid leaching process. Minerals 8:125.
  • Lim, K., and B. Shon. 2008. Metal components (Fe, Al, and Ti). Recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves. International Journal of Engineering Technology and Advanced Engineering 5:2.
  • Liu, W., X. Chen, W. Li, Y. Yu, and K. Yan. 2014. Environmental assessment, management, and utilization of red mud in China. Journal of Cleaner Production 84:606–10.
  • Liu, X., and N. Zhang. 2011. Utilization of red mud in cement production: A review. Waste Management and Research 29 (10):1053–63.
  • Liu, Z., Y. Zong, H. Li, and Z. Zhao. 2018. Characterization of scandium and gallium in red mud with Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Electron Probe MicroAnalysis (EPMA). Minerals Engineering 119:263–73.
  • Lu, F., T. Xiao, J. Lin, A. Li, Q. Long, F. Huang, L. Xiao, X. Li, J. Wang, Q. Xiao, et al. 2018. Recovery of gallium from Bayer red mud through acidic-leaching-ion exchange process under normal atmospheric pressure. Hydrometallurgy 175:124–32.
  • Lu, R., Y. Zhang, F. Zhou, and X. Wang. 2012. Research of Leaching alumina and iron oxide from Bayer Red mud. Applied Mechanics and Materials 151:355–59.
  • Mandal, A. K., H. R. Verma, and O. P. Sinha. 2017. Utilization of aluminum plants waste for production of insulation bricks. Journal of Cleaner Production 162:949–57.
  • Martoyan, G. A., G. G. Karamyan, and G. A. Vardan 2016. New technology of extracting the amount of rare earth metals from the red mud. IOP conference series: Materials Science and Engineering, Altay, Russia. 112.
  • McConchie, D., P. Saenger, and R. Fawkes 1996. An environmental assessment of the use of seawater to neutralize bauxite refinery wastes. Second International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes. Scottsdale, Arizona: The Minerals, Metals, and Materials Society.
  • McDonald, J., and S. K. Kawatra. 2017. Agglomeration of hematite concentrate by starches. Mineral Processing and Extractive Metallurgy Review 38 (1):1–6.
  • Meshram, P., and Abhilash. 2019. Recovery and recycling of cerium from primary and secondary resources- a critical review. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2019.1677647.
  • Milacic, R., T. Zuliani, and J. Scancar. 2012. Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Science of the Total Environment 426:359–65.
  • Mineral Prices. 2020. Available from https://mineralprices.com/
  • Mitsopoulus, V. L., and M. Belanger 2006. Thickened tailings and red mud disposal. Iron Control Technologies. Montreal, Canada.
  • Montini, M., X. Li, A. J. Rodrigues, R. C. O. Romano, R. G. Pileggi, and K. Scrivener 2018. Activate fly ash reaction using bauxite residue in blended cement. 2nd International Bauxite Residue Valorization and Best Practices Conference. Athens, Greece. 7-10/May/2018.
  • Narayanan, R. P., N. K. Kazantzis, and M. H. Emmert. 2019. Process for scandium recovery from Jamaican bauxite residue: A probabilistic economic assessment. Materials Today: Proceedings 9:578–86.
  • Ochsenkuhn-Petropulu, M., T. Lyberopulu, K. M. Ochsenkuhn, and G. Parissakis. 1996. Recovery of lanthanides and yttrium from red mud by selective leaching. Analytica Chimica Acta 319:249–54.
  • Palmer, S. J., M. Nothling, K. H. Bakon, and R. L. Frost. 2010. Thermally activated seawater neutralized red mud used for the removal of arsenate, vanadate, and molybdate from aqueous solutions. Journal of Colloid and Interface Science 342:147–54.
  • Paramguru, R. K., P. C. Rath, and V. N. Misra. 2004. Trends in red mud utilization – A review. Mineral Processing and Extractive Metallurgy Review 26 (1):1–29.
  • Pashias, N., D. V. Boger, K. J. Summers, and D. J. Glenister. 2000. A fifty cent rheometer for waste management of environmentally sensitive ore tailings. Mineral Processing and Extractive Metallurgy Review 20 (1):115–22.
  • Patel, R. K., and M. K. Sahu (2018). Neutralization of red mud using CO2 sequestration. 2nd international bauxite residue valorization and best practices conference. Athens, Greece. 7-10/May/2018.
  • Patel, S., and B. K. Pal. 2015. Current status of an industrial waste: Red mud an overview. International Journal of Latest Technology in Engineering, Management, and Applied Science (IJLTEMAS) 4 (8):1–16.
  • Pei, D., Y. Li, and D. Cang. 2017. Na+-solidification behavior of SiO2-Al2O3-CaO-MgO (10 wt%) ceramics prepared from red mud. Ceramics International 43:16936–42.
  • Pera, J., R. Boumaza, and J. J. Ambroise. 1996. Development of a pozzolanic pigment from red mud. Cement and Concrete Research 27:1513–22.
  • Philip, G., and O. C. Fursman 1968. Centrifugal Dewatering of Jamaican red mud. U. S. Department of the Interior, Bureau of Mines.
  • Pontikes, Y., and G. N. Angelopoulos. 2013. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation, and Recycling 73:53–63.
  • Power, G., M. Grafe, and C. Klauber. 2011. Bauxite residue issues: I. Current management, disposal, and storage practices. Hydrometallurgy 108:33–45.
  • Rai, S., S. Bahadure, M. J. Chaddha, and A. Agnihotri. 2020. Disposal practices and utilization of red mud (Bauxite Residue): A review in Indian context and abroad. Journal of Sustainable Metallurgy 6:1–8.
  • Rai, S., K. Wasewar, R. S. Mishra, P. Mahindran, M. J. Chadda, J. Mukhopadhyay, and Y. Changkoo. 2013. Sequestration of carbon dioxide in red mud. Desalination and Water Treatment 51:2185–92.
  • Rai, S., K. Wasewar, J. Mukhopadhyay, C. Kyoo Yoo, and H. Uslu. 2012. Neutralization and utilization of red mud for its better waste management. Archives of Environmental Science 6:13–33.
  • Resende, E. C., I. Carvalho, M. Schlaf, and M. C. Gueriero. 2014. Red Mud waste from the Bayer process as a catalyst for the desulfurization of hydrocarbon fuels. RSC Advances 4:47287.
  • Rivera, M. R., B. Ulenaers, G. Ounoughene, K. Binnemans, and T. VanGerven. 2018. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Minerals Engineering 119:82–92.
  • Rivera, R. M., O. Ghania, R. B. Chenna, B. Koen, and T. Van Gerven. 2017. Neutralization of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. Minerals Engineering 112 (Page):92–102.
  • Rutyers, S., J. Mertens, E. Vassilieva, B. Dehandschutter, A. Poffijin, and E. Smolders. 2011. The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil. Environmental Science and Technology 45:1616–22.
  • Sadangi, J. K., S. P. Das, A. Tripathy, and S. K. Biswal. 2018. Investigation into recovery of iron values from red mud dumps. Separation Science and Technology 53 (14):2186–91.
  • Sankey, S. E., and R. J. Schwarz 1982. The structure- property relationship of polymers used in red mud flocculation. Presentation at the SME-AIME annual meeting. February 14-18/1982. Dallas, Texas.
  • Scarsella, A., T. Leong, and B. Henriksson 2012. A novel and environmentally friendly process for the treatment of Bayer process residue. Proceedings of the 9th International Alumina Quality Workshop, Perth, Australia, 171.
  • Sglavo, V. M., R. Campostrini, S. Maurina, G. Carturan, M. Monagheddu, G. Budroni, and G. Cocco. 2000a. Bauxite ‘red mud’ in the ceramic industry. Part 1: Thermal behavior. Journal of the European Ceramic Society 20:235–44.
  • Sglavo, V. M., R. Campostrini, S. Maurina, G. Carturan, M. Monagheddu, G. Budroni, and G. Cocco. 2000b. Bauxite ‘red mud’ in the ceramic industry. Part 2: Production of clay-based ceramics. Journal of the European Ceramic Society 20:245–52.
  • Shamshad, A., B. K. Das, and S. K. Das. 2018. Dispersion and sedimentation characteristics of red mud. Journal of Hazardous, Toxic, and Radioactive Waste 22:4.
  • Singh, K. K., V. K. Singh, T. R. Mankhand, and A. K. Mandal 2014. Utilization of Indian red mud and fly ash with combustible additives to prepare foam bricks. Proceedings from the International Conference on Energy, Environment, Materials, and Safety, Kochi, India. December 10–12, 2014.
  • Singh, U., S. A. Thawrani, M. S. Ansari, S. P. Puttewar, and A. Agnihotri. 2019. Studies on beneficiation and leaching characteristics of rare earth elements in Indian red mud. Russian Journal of Non Ferrous Metals 60 (4):335–40.
  • Smith, P. G., R. M. Pennifold, M. G. Davies, and E. J. Jamieson 2003. Reactions of Carbon Dioxide with tri-calcium aluminate. Hydrometallurgy. Fifth international conference in honor of professor Ian Ritchie, Vancouver, BC, Canada.
  • Snars, K., and R. J. Gilkes. 2009. Evaluation of bauxite residues (red muds) of different origins for environmental applications. Applied Clay Science 46:13–20.
  • Srikanth, S., A. K. Ray, A. Bandopadhyay, B. Ravikumar, and A. Jha. 2005. Phase constitution during sintering of red mud and red mud–fly ash mixtures. Journal of the American Ceramic Society 88:2396–401.
  • Srivastava, U., T. Eisele, and S. K. Kawatra. 2013. Study of organic and inorganic binders on strength of iron oxide pellets. Metallurgical and Materials Transactions 44 (4):1000–09.
  • Srivastava, U., and S. K. Kawatra. 2009. Strategies for processing low-grade iron ore minerals. Mineral Processing and Extractive Metallurgy Review 30 (4):361–71.
  • Thomas, D., and B. Pei. 2007. Chemical reaction engineering in the Bayer process. In Essential readings in light metals, ed. D. Donaldson and B. E. Raahauge, 118–23. Cham: The Minerals, Metals, and Materials Society. Springer.
  • U.S. Geological Survey, Mineral Commodity Summaries. 2019. https://www.usgs.gov/centers/nmic/mineral-commodity-summaries
  • Ujaczki, E., R. Courtney, P. Cusack, R. K. Chinnam, S. Clifford, T. Curtin, and L. O’Donoghue. 2019. Recovery of gallium from bauxite residue using combined oxalic acid leaching with adsorption onto zeolite HY. Journal of Sustainable Metallurgy 5:262–74.
  • Ujaczki, E., V. Feigl, M. Molnar, P. Cusack, T. Curtin, R. Courtney, L. O’Donoghue, P. Davris, C. Hugi, M. Evangelou, et al. 2018. Re‐using bauxite residues: Benefits beyond (critical raw) material recovery. Journal of Chemical Technology and Biotechnology 93 (9):2498–510.
  • Ujaczki, E., Y.-S. Zimmerman, V. Feigl, and M. Lenz (2015). Recovery of rare Earth elements from Hungarian red mud with combined acid leaching and liqud-liquid extraction. Proceedings of the Bauxite Residue Valorization and Best Practices Conference, Leuven, Belgium. 1–7.
  • Vachon, P., R. D. Tyagi, J. C. Auclair, and K. J. Wilkinson. 1994. Chemical and biological leaching of aluminum from red mud. Environmental Science and Technology 24:26–30.
  • Vind, J., A. Malfliet, B. Blanpain, P. E. Tsakiridis, A. H. Tkacyk, V. Vassiliadou, and D. Panias. 2018. Rare earth element phases in bauxite residue. Minerals 8:77.
  • Wang, L., N. Sun, H. Tang, and W. Sun. 2019. A review on comprehensive utilization of red mud and prospect analysis. Minerals 9 (6):362.
  • Wang, W., Y. Pranolo, and C. Y. Cheng. 2013. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Separation and Purification Technology 108:96–102.
  • Wargalla, G., and W. Brandt. 1981. Processing of diaspore bauxites. In Essential readings in light metals, ed. D. Donaldson and B. E. Raahauge, 393–401. Cham: The Minerals, Metals, and Materials Society. Springer.
  • Wen, Z., S. Ma, S. Zheng, and Y. Zhang Assessment of environmental quality impacts caused by red mud storage facilities in China. Life of Mine Conference. Brisbane, Australia. July 12, 2012.
  • Xue, B., B. Wei, L. Ruan, F. Li, Y. Jiang, W. Tian, B. Su, and L. Zhou. 2019. The influencing factor study on the extraction of gallium from red mud. Hydrometallurgy 186:91–97.
  • Yadav, V. S., M. Prasad, J. Khan, S. S. Amritphale, M. Singh, and C. B. Raju. 2010. Sequestration of carbon dioxide (CO2) using red mud. Journal of Hazardous Materials 176:1044–50.
  • Yagmurlu, B., G. Alkan, B. Xakalashe, C. Schier, L. Gronen, I. Koiwa, C. Dittrich, and B. Friedrich. 2019. Synthesis of scandium phosphate after peroxide assisted leaching of iron depleted bauxite residue (Red Mud) slags. Scientific Reports 9:11803.
  • Yang, Y., X. Wang, M. Wang, H. Wang, and P. Xian. 2015. Recovery of iron from red mud by selective leach with oxalic acid. Hydrometallurgy 157:239–45.
  • Yang, Y., X. Wang, M. Wang, H. Wang, and P. Xian. 2016. Iron recovery from the leached solution of red mud through the application of oxalic acid. International Journal of Mineral Processing 157:145–51.
  • Yiran, L., H. Chen, J. Wang, F. Xu, and W. Zhang. 2014. Research on red mud treatment by a circulating superconducting magnetic separator. Environmental Technology 35 (10):1243–49.
  • Zhang, N., H. X. Li, and X. M. Liu. 2016. Recovery of scandium from bauxite residue-red mud: A review. Rare Metals 35 (12):887–900.
  • Zhang, X., K. Zhou, W. Chen, Q. Lei, Y. Huang, and C. Peng. 2019. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach. Journal of Central South University 26 (2):458–66.
  • Zhang, X., K. Zhou, Q. Lei, Y. Xing, C. Peng, and W. Chen. 2020. Stripping of Fe(III) from Aliquat 336 by NaH2PO4: Implication for rare-earth elements recovery from red mud. Separation Science and Technology. doi:10.1080/01496395.2020.1713814.
  • Zheng, C. H., Z. Chen, Z. Bi, and T. Xiatao. 2017. Reduction of hematite (Fe2O3) to metallic iron by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study. Powder Technology 316:410–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.