391
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Novel Technology for the Recovery of Zinc from the Zinc Leaching Residue by the Bottom-blown Reduction

, , , , &

References

  • Baik, D. S., and D. J. Fray. 2000. Recovery of zinc from electric-arc furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte. Mineral Processing and Extractive Metallurgy 109 (3):121–28. doi:10.1179/mpm.2000.109.3.121.
  • Balarini, J. C., L. D. O. Polli, and T. L. S. Miranda. 2008. Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc. Minerals Engineering 21:100–10. doi:10.1016/j.mineng.2007.10.002.
  • Behnajady, B., and J. Moghaddam. 2017. Selective leaching of zinc from hazardous As-bearing zinc plant purification filter cake. Chemical Engineering Research and Design 117:564–74. doi:10.1016/j.cherd.2016.11.019.
  • Beşe, A. V., N. Borulu, and M. Çopur. 2010. Optimization of dissolution of metals from Waelz sintering waste (WSW) by hydrochloric acid solutions. Chemical Engineering Journal 162:718–22. doi:10.1016/j.cej.2010.06.035.
  • Chen, G. F., and Y. G. Li. 1989. Activity coefficient of ZnO in the FeO-Fe2O3-CaO-ZnO-SiO2 slag system. Nonferrous Metals (Extractive Metallurgy) 4:27–30.
  • Chen, L., Z. Hao, and T. Z. Yang. 2015. A comparison study of the oxygen-rich side blow furnace and the oxygen-rich bottom blow furnace for liquid high lead slag reduction. JOM 67:1123–29. doi:10.1007/s11837-015-1375-y.
  • Çopur, M., C. Özmetin, and E. Özmetin. 2004. Optimization study of the leaching of roasted zinc sulphide concentrate with sulphuric acid solutions. Chemical Engineering and Processing: Process Intensification 43:1007–14. doi:10.1016/j.cep.2003.10.001.
  • Filippou, D., and G. P. Demopoulos. 1997. Steady-state modeling of zinc-ferrite hot-acid leaching. Metallurgical and Materials Transactions B 28 (4):701–11. doi:10.1007/s11663-997-0044-0.
  • Fu, Y. K. 2003. Analysis of different treating technology of zinc leaching residue. Sichuan Nonferrous Metals 1:35–38.
  • Guo, X., M. Tian, and S. S. Wang. 2019. Element distribution in oxygen-enriched bottom-blown smelting of high-arsenic copper dross. JOM 71:3941–48. doi:10.1007/s11837-019-03767-3.
  • Han, J., W. Liu, and W. Qin. 2015. Recovery of zinc and iron from high iron-bearing zinc calcine by selective reduction roasting. Journal of Industrial and Engineering Chemistry 22:272–79. doi:10.1016/j.jiec.2014.07.020.
  • He, Q. X., and Y. L. Qin. 2008. On zinc and indium recycle from blast furnace slag by fuming process. Nonferrous Metals Science and Engineering 22:29–32.
  • Hu, Q. S. 1992. Discussion on the effect of high silicon iron ratio and high calcium slag type on increasing the treatment capacity of gold concentrate and reducing lead content in slag. Chin Nonferrous Metall 2:36–41.
  • Huda, N., J. Naser, and G. Brooks. 2012. Computational fluid dynamic modeling of zinc slag fuming process in top-submerged lance smelting furnace. Metallurgical and Materials Transactions B 43:39–55. doi:10.1007/s11663-011-9558-6.
  • Jha, M. K., V. Kumar, and R. J. Singh. 2001. Review of hydrometallurgical recovery of zinc from industrial wastes. Resources, Conservation and Recycling 33 (1):1–22. doi:10.1016/S0921-3449(00)00095-1.
  • Li, H. G. 2005. Metallurgical principle. Bei Jing: Science Press.
  • Li, W. F., J. Zhan, and Y. Q. Fan. 2017. Research and industrial application of a process for direct reduction of molten high-lead smelting slag. JOM 69:784–89. doi:10.1007/s11837-016-2236-z.
  • Li, Y. G. 1995. Research status of the activity of the PbO and ZnO in the slag. Nonferrous Metals (Extractive Metallurgy) 1:15–17.
  • Liu, W., J. W. Han, W. Q. Qin, L. Y. Chai, D. K. Hou, and Y. Kong. 2014a. Reduction roasting of high iron bearing zinc calcine for recovery of zinc and iron. Canadian Metallurgical Quarterly 53:176–82. doi:10.1179/1879139513Y.0000000113.
  • Liu, W., H. Luo, and W. Qing. 2014b. Investigation into oxygen-enriched bottom-blown stibnite and direct reduction. Metallurgical and Materials Transactions B 45:1281–90. doi:10.1007/s11663-014-0055-6.
  • Liu, Z., Z. Li, and X. Xie. 2020. Development of recyclable iron sulfide/selenide microparticles with high performance for elemental mercury capture from smelting flue gas over a wide temperature range. Environmental Science & Technology 54:604–12. doi:10.1021/acs.est.9b06393.
  • Luo, H. L., W. Liu, and W. Q. Qin. 2019. Cleaning of high antimony smelting slag from an oxygen-enriched bottom-blown by direct reduction. Rare Metals 38:800–04. doi:10.1007/s12598-015-0468-7.
  • Maczek, H., and R. Kola. 1980. Recovery of zinc and lead from electric-furnace steelmaking dust at Berzelius. JOM 32:53–58. doi:10.1007/BF03354543.
  • Peng, N., B. Peng, and L. Y. Chai. 2012. Recovery of iron from zinc calcines by reduction roasting and magnetic separation. Minerals Engineering 35:57–60. doi:10.1016/j.mineng.2012.05.014.
  • Reddy, R. G., V. L. Prabhu, and D. Mantha. 2002. Zinc fuming from lead blast furnace slag. High Temperature Materials and Processes 21 (6):377–86. doi:10.1515/HTMP.2002.21.6.377.
  • Rüşen, A., and M. A. Topçu. 2018. Investigation of zinc extraction from different leach residues by acid leaching. International Journal of Environmental Science and Technology 15 (1):1–12. doi:10.1007/s13762-017-1365-4.
  • Shen, L. J., B. Li, and D. J. Lei. 2005. Continuous converting research for producing zinc oxide by fuming furnace of zinc slag. Yunnan Metallurgy 34:17–23.
  • Turan, M. D., H. S. Altundoğan, and F. Tümen. 2004. Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 75:169–76. doi:10.1016/j.hydromet.2004.07.008.
  • Wang, Q. M., X. Y. Guo, and S. S. Wang. 2017. Multiphase equilibrium modeling of oxygen bottom-blown copper smelting process. Transactions of Nonferrous Metals Society of China 27:2503–11. doi:10.1016/S1003-6326(17)60277-2.
  • Yan, H., L. Y. Chai, and B. Peng. 2014. A novel method to recover zinc and iron from zinc leaching residue. Minerals Engineering 55:103–10. doi:10.1016/j.mineng.2013.09.015.
  • Yan, X. S., and C. L. Chen. 2012. Discussion on pyrometallurgical process for zinc leaching residue. China Nonferrous Metallurgy 41:58–62.
  • Zhang, Z. T., W. F. Li, and J. Zhan. 2018. The effect of coal ratio on the high-lead slag reduction process. Journal of Mining and Metallurgy, Section B: Metallurgy 54 (2):179–84. doi:10.2298/JMMB171227006Z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.