821
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Precious Metals Recovery from Waste Printed Circuit Boards by Gravity Separation and Leaching

, &

References

  • Abbruzzese, C., P. Fornari, R. Massidda, F. Veglio, and S. Ubaldini. 1995. Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy 39 (1–3):265–76. doi:10.1016/0304-386X(95)00035-F.
  • Akcil, A., C. Erust, C. S. Gahan, M. Ozgun, M. Sahin, and A. Tuncuk. 2015. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – A review. Waste Management 45:258–71. doi:10.1016/j.wasman.2015.01.017.
  • Alam, M. S., M. Tanaka, K. Koyama, T. Oishi, and J.-C. Lee. 2007. Electrolyte purification in energy-saving monovalent copper electrowinning processes. Hydrometallurgy 87 (1–2):36–44. doi:10.1016/j.hydromet.2006.12.001.
  • Albertyn, P., and C. Dorfling. 2018. Ammonium thiosulfate leaching of gold from printed circuit board waste. Proceedings: 29th International Mineral Processing Congress, Moscow. Paper 401.
  • Avraamides, J. 1982. Prospects for alternative leaching systems for gold: A review. Proceedings, Symposium on carbon-in-pulp technology for the extraction of gold, Australasian Institute of Mining and Metallurgy, Melbourne, 369–91.
  • Aylmore, M. G. 2005. Alternative lixiviants to cyanide for leaching gold ores. In Developments in Mineral Processing, Amsterdam, Netherlands, ed. M. D. Adams., Vol. 15, 501–39. Western Australia: Elsevier.
  • Bakhiyia, B., S. Gravela, D. Ceballosc, M. A. Flynnd, and J. Zayeda. 2018. Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environment International 110:173–92. doi:10.1016/j.envint.2017.10.021.
  • Barrick. 2016. Accessed December 25, 2019. https://www.barrick.com/news/news-details/2016/processing-innovation-nets-metallurgy-award/default.aspx/.
  • Behnamfard, A., M. M. Salarirad, and F. Veglio. 2013. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Management 33 (11):2354–63. doi:10.1016/j.wasman.2013.07.017.
  • Birloaga, I., and F. Vegliò. 2016. Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. Journal of Environmental Chemical Engineering 4 (1):20–29. doi:10.1016/j.jece.2015.11.021.
  • Birloaga, I., I. D. Michelis, F. Ferella, M. Buzatu, and F. Veglio. 2013. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Management 33 (4):935–41. doi:10.1016/j.wasman.2013.01.003.
  • Burat, F., A. Demirağ, and M. C. Şafak. 2020. Recovery of noble metals from floor sweeping jewelry waste by flotation-cyanide leaching. Journal of Material Cycles and Waste Management 22 (3):907–15. doi:10.1007/s10163-020-00982-y.
  • Burat, F., H. Baştürkcü, and M. Özer. 2019. Gold&silver recovery from jewelry waste with combination of physical and physicochemical methods. Waste Management 89:10–20. doi:10.1016/j.wasman.2019.03.062.
  • Burat, F., and M. Ozer. 2018. Physical separation route for printed circuit boards. Physicochemical Problems of Mineral Processing 54:554–66. doi:10.5277/ppmp1858.
  • Castro, L., and A. H. Martins. 2009. Recovery of tin and copper by recycling of printed circuit boards from obsolete computers. Brazilian Journal of Chemical Engineering 26 (4):649–57. doi:10.1590/S0104-66322009000400003.
  • Cerchier, P., M. Dabalà, and K. Brunelli. 2016. Gold recovery from PCBs with thiosulfate as complexing agent. Materials Science Forum 879:289–94. doi:10.4028/www.scientific.net/MSF.879.289.
  • Chehade, Y., A. Siddique, H. Alayan, N. Sadasivam, S. Nusri, and T. Ibrahim. 2012. Recovery of gold, silver, palladium, and copper from waste printed circuit boards. International Conference on Chemical, Civil and Environment Engineering (ICCEE’2012), Dubai, March 24-25.
  • Cui, J., and E. Forssberg. 2003. Mechanical recycling of waste electric and electronic equipment: A review. Journal of Hazardous Materials 99 (3):243–63. doi:10.1016/S0304-3894(03)00061-X.
  • Cui, J., and L. Zhang. 2008. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials 158 (2–3):228–56. doi:10.1016/j.jhazmat.2008.02.001.
  • Das, A., A. Vidyadhar, and S. P. Mehrotra. 2009. A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resource, Conservation and Recycling 53 (8):464–69. doi:10.1016/j.resconrec.2009.03.008.
  • Deveci, H., E. Yazıcı, U. Aydın, R. Yazıcı, and A. Akçıl. 2010. Extraction of copper from scrap TV boards by sulphuric acid leaching under oxidising conditions. Proceedings of Going Green-Care Innovation 2010 Conference, Vienna, 45.
  • Duan, H., K. Hou, J. Li, and X. Zhu. 2011. Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. Journal of Environmental Management 92 (3):392–99. doi:10.1016/j.jenvman.2010.10.057.
  • Duan, H., S. Wang, X. Yang, X. Yuan, Q. Zhang, Z. Huang, and H. Guo. 2017. Simultaneous separation of copper from nickel in ammoniacal solutions using supported liquid membrane containing synergistic mixture of M5640 and TRPO. Chemical Engineering Research and Design 117:460–71. doi:10.1016/j.cherd.2016.11.003.
  • Ebin, B., and M. I. Isik. 2016. Pyrometallurgical processes for the recovery of metals from WEEE. WEEE Recycling, Research, Development, and Policies 5:107–37. doi:10.1016/B978-0-12-803363-0.00005-5.
  • El-Nasr, R. S., S. M. Abdelbasir, A. H. Kamel, and S. Hassan. 2020. Environmentally friendly synthesis of copper nanoparticles from waste printed circuit boards. Separation and Purification Technology 230. doi:10.1016/j.seppur.2019.115860.
  • Erust, C., A. Akcil, A. Tuncuk, H. Deveci, and E. Y. Yazici. 2019. A multi-stage process for recovery of neodymium (Nd) and dysprosium (Dy) from spent hard disc drives (HDDs). Mineral Processing and Extractive Metallurgy Review 1–12. doi:10.1080/08827508.2019.1692010.
  • Feng, D., and J. S. J. Van Deventer. 2002. Leaching behaviour of sulphides in ammoniacal thiosulphate systems. Hydrometallurgy 63 (2):189–200. doi:10.1016/S0304-386X(01)00225-0.
  • Ficeriova, J., P. Balaz, and E. Gock. 2011. Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste. Acta Montanistica Slovaca 16:128–31.
  • Galbraith, P., and J. L. Devereux. 2002. Beneficiation of printed wiring boards with gravity concentration. Conference Record IEEE International Symposium on Electronics and the Environment. doi: 10.1109/ISEE.2002.1003273
  • Ha, V. H., J. Lee, J. Jeong, H. T. Hai, and M. K. Jha. 2010. Thiosulfate leaching of gold from waste mobile phones. Journal of Hazardous Materials 178 (1–3):1115–19. doi:10.1016/j.jhazmat.2010.01.099.
  • Han, J., C. Duan, G. Li, L. Huang, X. Chai, and D. Wang. 2018. The influence of waste printed circuit boards characteristics and nonmetal surface energy regulation on flotation. Waste Management 80:81–88. doi:10.1016/j.wasman.2018.09.002.
  • Hiskey, J. B., and V. P. Atluri. 1988. Dissolution chemistry of gold and silver in different lixiviants. Mineral Processing and Extractive Metallurgy Review 4 (1–2):95–134. doi:10.1080/08827508808952634.
  • Jafari, M., H. Abdollahi, S. Z. Shafaei, M. Gharabaghi, H. Jafari, A. Akcil, and S. Panda. 2019. Acidophilic bioleaching: A review on the process and effect of organic–inorganic reagents and materials on its efficiency. Mineral Processing and Extractive Metallurgy Review 40 (2):87–107. doi:10.1080/08827508.2018.1481063.
  • Kamberovic, Z., M. Korac, M. Ranitovic, and S. Vracar. 2010. Preliminary process analysis and development of hydrometallurgical process for the recovery of copper from waste printed circuit boards. Proceedings of Going Green Care Innovation 2010 Conference, Vienna, Austria, November 8–11, Paper no: IS05c.
  • Kaya, M. 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Management 57:64–90. doi:10.1016/j.wasman.2016.08.004.
  • Kaya, M. 2018. Current WEEE recycling solutions. Waste Electrical and Electronic Equipment Recycling 33–39. doi:10.1016/B978-0-08-102057-9.00003-2.
  • Kim, E., J. Lee, B. Kim, M. Kim, and J. Jeong. 2007. Leaching behavior of nickel from waste multi-layer ceramic capacitors. Hydrometallurgy 86 (1–2):89–95. doi:10.1016/j.hydromet.2006.11.007.
  • Kumar, V., J.-C. Lee, J. Jeong, M. K. Jha, B.-S. Kim, and R. Singh. 2013. Novel physical separation process for eco-friendly recycling of rare and valuable metals from end-of-life DVD-PCBs. Separation and Purification Technology 111:145–54. doi:10.1016/j.seppur.2013.03.039.
  • Kumari, A., M. K. Jha, and R. P. Singh. 2016. Recovery of metals from pyrolysed PCBs by hydrometallurgical techniques. Hydrometallurgy 165:97–105. doi:10.1016/j.hydromet.2015.10.020.
  • Le, L. H., J. Jeong, J. Lee, B. D. Pandey, J. Yoo, and T. H. Huyunh. 2011. Hydrometallurgical process for copper recovery from waste printed circuit boards (PCBs). Mineral Processing and Extractive Metallurgy Review 32 (2):90–104. doi:10.1080/08827508.2010.530720.
  • Lee, H., and B. Mishra. 2020. Recovery of copper and precious metals and separation of lead from flue dust of electronic waste processing. Mineral Processing and Extractive Metallurgy Review 41 (3):153–61. doi:10.1080/08827508.2019.1575827.
  • Lee, J., S. Wagstaff, G. Lambotte, A. Allanore, and F. Tesfaye. 2020. Materials processing fundamentals 2020. Springer. doi: 10.1007/978-3-030-36556-1.
  • Li, C., S. Huo, Z. Yu, B. Xi, K. M. Yeager, Z. He, C. Ma, J. Zhang, and F. Wu. 2017. National investigation of semi-volatile organic compounds (PAHs, OCPs, and PCBs) in lake sediments of China: Occurrence, spatial variation and risk assessment. Science of the Total Environment 579:325–36. doi:10.1016/j.scitotenv.2016.11.097.
  • Li, H., J. Eksteen, and E. Orabya. 2018. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resource, Conservation and Recycling 139:122–39. doi:10.1016/j.resconrec.2018.08.007.
  • Li, J., H. Lu, S. Liu, and Z. Xu. 2008. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field. Journal of Hazardous Materials 153 (1–2):269–75. doi:10.1016/j.jhazmat.2007.08.047.
  • Lu, Y., and Z. Xu. 2016. Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resource, Conservation and Recycling 113:28–39. doi:10.1016/j.resconrec.2016.05.007.
  • Marsden, J. O., and C. I. House. 2006. The chemistry of gold extraction. 2nd ed. ISBN-13:978-0-87335-240-6.
  • Mecucci, A., and K. Scott. 2002. Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. Journal of Chemical Technology and Biotechnology 77 (4):449–57. doi:10.1002/jctb.575.
  • Molleman, E., and D. Dreisinger. 2002. The treatment of copper–gold ores by ammonium thiosulfate leaching. Hydrometallurgy 66 (1–3):1–21. doi:10.1016/S0304-386X(02)00080-4.
  • Nicol, M. J., C. A. Fleming, and R. L. Paul. 2006. The chemistry of the extraction of gold. In The chemistry of gold extraction, eds. J. Marsden, I. House, 831–905. Littleton, CO, USA: SME.
  • Ogunniyi, I. O., and M. K. G. Vermaak. 2009. Investigation of froth flotation for beneficiation of printed circuit board comminution fines. Minerals Engineering 22 (4):378–85. doi:10.1016/j.mineng.2008.10.007.
  • Oh, C. J., S. O. Lee, H. S. Yang, T. J. Ha, and M. J. Kim. 2003. Selective leaching of valuable metals from waste printed circuit boards. Journal of the Air & Waste Management Association 53 (7):897–902. doi:10.1080/10473289.2003.10466230.
  • Park, Y. J., and D. J. Fray. 2009a. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials 164 (2–3):1152–58. doi:10.1016/j.jhazmat.2008.09.043.
  • Park, Y. J., and D. J. Fray. 2009b. Separation of zinc and nickel ions in a strong acid through liquid–liquid extraction. Journal of Hazardous Materials 163 (1):259–65. doi:10.1016/j.jhazmat.2008.06.085.
  • Petter, P. M. H., H. M. Veit, and A. M. Bernardes. 2014. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Management 34 (2):475–82. doi:10.1016/j.wasman.2013.10.032.
  • Pilsniak, M., A. W. Trochimczuk, and W. Apostoluk. 2009. The uptake of gold(I) from ammonia leaching solution by imidazole containing polymeric resins. Separation Science and Technology 44 (5):1099–119. doi:10.1080/01496390902729007.
  • Priya, A., and S. Hait. 2018. Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans. Hydrometallurgy 177:132–39. doi:10.1016/j.hydromet.2018.03.005.
  • Quinet, P., J. Proost, and A. V. Lierde. 2005. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Mineral and Metallurgical Processing 22:17–22. doi:10.1007/BF03403191.
  • Sadegh Safarzadeh, M., M. S. Bafghi, D. Moradkhani, and M. Ojaghi Ilkhchi. 2007. A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering 20 (3):211–20. doi:10.1016/j.mineng.2006.07.001.
  • Sarvar, M., M. M. Salarirad, and M. A. Shabani. 2015. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods. Waste Management 45:246–57. doi:10.1016/j.wasman.2015.06.020.
  • Sheng, P. P., and T. H. Etsell. 2007. Recovery of gold from computer circuit board scrap using aqua regia. Waste Management and Research 25 (4):380–83. doi:10.1177/0734242X07076946.
  • Sparrow, G. J., and J. T. Woodcock. 1995. Cyanide and other lixiviant leaching systems for gold with some practical applications. Mineral Processing and Extractive Metallurgy Review 14 (3–4):193–247. doi:10.1080/08827509508914125.
  • Syed, S. 2012. Recovery of gold from secondary sources—A review. Hydrometallurgy 115-116:30–51. doi:10.1016/j.hydromet.2011.12.012.
  • Tanısalı, E., M. Özer, and F. Burat. 2018. An overview on physical and physico-chemical beneficiation studies conducted for metal recovery from PCBs. 15th International Mineral Processing Symposium, Antalya-Turkey, October 23-25, 341–46.
  • Tuncuk, A., V. Stazi, A. Akcil, E. Y. Yazici, and H. Deveci. 2012. Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering 25 (1):28–37. doi:10.1016/j.mineng.2011.09.019.
  • Veit, H., T. Diehl, A. Salami, J. Rodrigues, A. Bernardes, and J. Tenorio. 2005. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Management 25 (1):67–74. doi:10.1016/j.wasman.2004.09.009.
  • Veit, H. M., N. C. D. F. Juchneski, and J. Scherer. 2014. Use of gravity separation in metals concentration from printed circuit board scraps. Rem: Revista Escola De Minas 67 (1):73–79. doi:10.1590/S0370-44672014000100011.
  • Wang, L., Q. Li, X. Sun, and L. Wang. 2019. Separation and recovery of copper from waste printed circuit boards leach solution using solvent extraction with Acorga M5640 as extractant. Separation Science and Technology 54 (8):1302–11. doi:10.1080/01496395.2018.1539106.
  • Wu, R. W., T. Harner, M. L. Diamond, and B. Wilford. 2008. Partitioning characteristics of PCBs in urban surface films. Atmospheric Environment 42 (22):5696–705. doi:10.1016/j.atmosenv.2008.03.009.
  • Yang, C., J. Li, Q. Tan, L. Liu, and Q. Dong. 2017. Green process of metal recycling: Coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustainable Chemistry & Engineering 5 (4):3524–34. doi:10.1021/acssuschemeng.7b00245.
  • Yang, H., J. Liu, and J. Yang. 2011. Leaching copper from shredded particles of waste printed circuit boards. Journal of Hazardous Materials 187 (1–3):393–400. doi:10.1016/j.jhazmat.2011.01.051.
  • Zeng, X., L. Zheng, H. Xie, B. Lu, K. Xia, K. Chao, W. Li, J. Yang, S. Lin, and J. Li. 2012. Current status and future perspective of waste printed circuit boards recycling. Procedia Environmental Sciences 16:590–97. doi:10.1016/j.proenv.2012.10.081.
  • Zhang, K., J. L. Schnoor, and E. Y. Zeng. 2012a. E-Waste recycling: Where does it go from here? Environmental Science & Technology 46 (20):10861–67. doi:10.1021/es303166s.
  • Zhang, S., and E. Forssberg. 1997. Mechanical separation-oriented characterization of electronic scrap. Resources, Conservation and Recycling 21 (4):247–69. doi:10.1016/S0921-3449(97)00039-6.
  • Zhang, S., and E. Forssberg. 1998. Optimization of electrodynamic separation for metals recovery from electronic scrap. Resources, Conservation and Recycling 22 (3–4):143–62. doi:10.1016/S0921-3449(98)00004-4.
  • Zhang, W.-H., Y.-X. Wu, and M. O. Simonnot. 2012b. Soil Contamination due to e-waste disposal and recycling activities: A review with special focus on China. Pedosphere 22 (4):434–55. doi:10.1016/S1002-0160(12)60030-7.
  • Zhao, Y., X. Wen, B. Li, and D. Tao. 2004. Recovery of copper from waste printed circuit boards. Mining, Metallurgy & Exploration 21 (2):99–102. doi:10.1007/bf03403310.
  • Zhou, Y., and K. Qiu. 2010. A new technology for recycling materials from waste printed circuit boards. Journal of Hazardous Materials 175 (1–3):823–28. doi:10.1016/j.jhazmat.2009.10.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.