382
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Drying Kinetics of a Philippine Nickel Laterite Ore by Microwave Heating

, , , , &

References

  • Athayde, M., M. Cota, and M. Covcevich. 2018. Iron ore pellet drying assisted by microwave: A kinetic evaluation. Mineral Processing and Extractive Metallurgy Review 39:266–75. doi:10.1080/08827508.2017.1423295.
  • Dadalı, G., D. K. Apar, and B. Özbek. 2007. Estimation of effective moisture diffusivity of okra for microwave drying. Drying Technology 25:1445–50.
  • Dlugogorski, B. Z., and R. D. Balucan. 2014. Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renewable and Sustainable Energy Reviews 31:353–67. doi:10.1016/j.rser.2013.11.002.
  • Forster, J., C. Pickles, and K. Mackowiak. 2015. High grade concentrate from a low grade silicate laterite ore via microwave vacuum reduction roasting.
  • Gao, H., T. Jiang, Y. Xu, J. Wen, and X. Xue. 2018. Leaching kinetics of vanadium and chromium during sulfuric acid leaching with microwave and conventional calcification-roasted high chromium vanadium slag. Mineral Processing and Extractive Metallurgy Review 41 (1):22–31. doi:10.1080/08827508.2018.1538985.
  • Ghazanfari, A., S. Emami, L. G. Tabil, and S. Panigrahi. 2006. Thin-layer drying of flax fiber: I. Analysis of modeling using Fick’s second law of diffusion. Drying Technology 24 (12):1631–35. doi:10.1080/07373930601031430.
  • Haque, K. E. 1999. Microwave energy for mineral treatment processes—a brief review. International Journal of Mineral Processing 57 (1):1–24. doi:10.1016/S0301-7516(99)00009-5.
  • Javad Koleini, S. M., K. Barani, and B. Rezaei. 2012. The effect of microwave treatment on dry grinding kinetics of iron ore. Mineral Processing and Extractive Metallurgy Review 33 (3):159–69. doi:10.1080/08827508.2011.562947.
  • Ju, S. H., S. Pritam, J. H. Peng, N. Aleksandar, N. Liu, C. Guo, S. H., and L. B. Zhang. 2017. Recent developments in the application of microwave energy in process metallurgy at KUST. Mineral Processing and Extractive Metallurgy Review 39:181–90. doi:10.1080/08827508.2017.1401537.
  • Li, J., D. Li, Z. Xu, C. Liao, Y. Liu, and B. Zhong. 2018. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution. Journal of Cleaner Production 179:24–30. doi:10.1016/j.jclepro.2018.01.085.
  • Li, J., Y. Li, Y. Gao, Y. Zhang, and Z. Chen. 2016. Chlorination roasting of laterite using salt chloride. International Journal of Mineral Processing 148:23–31. doi:10.1016/j.minpro.2016.01.007.
  • Lv, W., G. Fan, X. Lv, X. Lv, M. Hu, S. Zhang, and C. Bai. 2017. Drying kinetics of Philippine nickel laterite by microwave heating. Drying Technology 36 (7):849–58. doi:10.1080/07373937.2017.1359183.
  • O’Connor, F., W. H. Cheung, and M. Valix. 2006. Reduction roasting of limonite ores: Effect of dehydroxylation. International Journal of Mineral Processing 80 (2–4):88–99. doi:10.1016/j.minpro.2004.05.003.
  • Pan, L. T., B, Y. C., L, J. L., & L, Z. Z. 2013. Features and practical application about the new type drying equipment of the laterite nickel ore. Metallurgical Equipment 203: 66–70. 1001-1269. 2013.03.017. 10.3969/j..
  • Pickles, C. A., J. Mouris, and R. M. Hutcheon. 2011. High-temperature dielectric properties of goethite from 400 to 3000 MHz. Journal of Materials Research 20 (1):18–29. doi:10.1557/jmr.2005.0012.
  • Ribeiro, P. P. M., R. Neumann, I. D. D. Santos, M. C. Rezende, P. Radino-Rouse, and A. J. B. Dutra. 2019. Nickel carriers in laterite ores and their influence on the mechanism of nickel extraction by sulfation-roasting-leaching process. Minerals Engineering 131:90–97. doi:10.1016/j.mineng.2018.10.022.
  • Roy, S. K., D. Nayak, N. Dash, and S. S. Rath. 2020. Influence of coal petrography on microwave-assisted carbothermic reduction roasting of banded hematite jasper ore. Mineral Processing and Extractive Metallurgy Review 1–15. doi:10.1080/08827508.2020.1743290.
  • Ruan, H. D., R. L. Frost, J. T. Kloprogge, and L. Duong. 2002. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58 (5):967–81. doi:10.1016/s1386-1425(01)00574-1.
  • Tham, T. C., M. X. Ng, S. P. Ong, C. L. Hii, and C. L. Law. 2018. Application of microwave-assisted drying on specific energy consumption, effective diffusion coefficient and topological changes of crumb natural rubber (Cis-1, 4-polyisoprene). Chemical Engineering and Processing-Process Intensification 128:19–35. doi:10.1016/j.cep.2018.04.004.
  • Zhang, W., Z. Luo, and J. Chen. 2017. Complex permittivity and microwave absorption properties of zinc oxide leach residues. Mineral Processing and Extractive Metallurgy Review 38 (5):304–11. doi:10.1080/08827508.2017.1338182.
  • Zhu, D., L. Pan, Z. Guo, J. Pan, and F. Zhang. 2019. Utilization of limonitic nickel laterite to produce ferronickel concentrate by the selective reduction-magnetic separation process. Advanced Powder Technology 30 (2):451–60. doi:10.1016/j.apt.2018.11.024.
  • Zhu, Z., and Y. Huang. 2007. Calcination of basic nickel carbonate in a 5.5 kW microwave oven. Mineral Processing and Extractive Metallurgy Review 15 (1–4):181–89. doi:10.1080/08827509508914196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.