330
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An Analysis of Copper Concentrate from a Kupferschiefer-type Ore from Legnica-Glogow Copper Basin (SW Poland)

ORCID Icon

References

  • Asghari, M., F. Nakhaei, and O. VandGhorbany. 2019. Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (6):761–778. doi:https://doi.org/10.1080/15567036.2018.1520356.
  • Bahrami, A., Y. Ghorbani, M. R. Hosseini, F. Kazemi, M. Abdollahi, and A. Danesh. 2019. Combined effect of operating parameters on separation efficiency and kinetics of copper flotation. Mining, Metallurgy & Exploration 36:409–21. doi:https://doi.org/10.1007/s42461-018-0005-y.
  • Bakalarz, A. 2019. Chemical and mineral analysis of flotation tailings from stratiform copper ore from Lubin Concentrator Plant (SW Poland). Mineral Processing and Extractive Metallurgy Review 40 (6):437–46. doi:https://doi.org/10.1080/08827508.2019.1667778.
  • Bakalarz, A., M. Duchnowska, and R. Kubik. 2018. Influence of dextrin on beneficiation of components from copper flotation concentrate. In IOP Conference Series: Materials Science and Engineering,Vol. 427, 012006. https://iopscience.iop.org/article/10.1088/1757-899X/427/1/012006/pdf.
  • Bakalarz, A., M. Duchnowska, and W. Pawlos. 2018. Influence of hydrodynamics on preflotation process in flotation machine. Minerals & Metallurgical Processing 35 (1):19–23. doi:https://doi.org/10.19150/mmp.8054.
  • Borg, G., A. Piestrzynski, G. Bachmann, W. Püttmann, S. Walther, and M. Fiedler. 2012. An overview of the European Kupferschiefer deposits. Society of Economic Geologists, Inc., Special Publication 16 (18):455–86.
  • Celik, I. B. 2015. Mineralogical interpretation of the collector dosage change on the sphalerite flotation performance. International Journal of Mineral Processing 135:11–19. doi:https://doi.org/10.1016/j.minpro.2014.12.003.
  • Celik, I. B., N. M. Can, and J. Sherazadishvili. 2010. Influence of process mineralogy on improving metallurgical performance of a flotation plant. Mineral Processing and Extractive Metallurgy Review 32 (1):30–46. doi:https://doi.org/10.1080/08827508.2010.509678.
  • Chen, X., and Y. Peng. 2018. Managing clay minerals in froth flotation—A critical review. Mineral Processing and Extractive Metallurgy Review 39 (5):289–307. doi:https://doi.org/10.1080/08827508.2018.1433175.
  • Chmielewski, T. 2007a. Atmospheric leaching of shale by-product from Lubin concentrator”. Physicochemical Problems of Mineral Processing 41:337–48.
  • Chmielewski, T. 2007b. Non-oxidative leaching of black shale copper ore from Lubin Mine. Physicochemical Problems of Mineral Processing 41:323–35.
  • Chmielewski, T., A. Konieczny, J. Drzymala, R. Kaleta, and A. Luszczkiewicz. 2014. Development concepts for processing of Lubin-Glogow complex sedimentary copper ores. In Proceedings XXVII International Mineral Processing Congress, ed. J. Yianatos, A. Doll, C. Gomez, and R. Kuyvenhoven, Vol. 11, 10–19. Santiago, Chile. October 20–24.
  • Chmielewski, T. 2015. Development of a hydrometallurgical technology for production of metals from KGHM Polska Miedz S.A. concentrates. Physicochemical Problems of Mineral Processing 51 (1):335–50. doi:https://doi.org/10.5277/ppmp150120.
  • d´Hugues, P., A. Grotowski, A. Luszczkiewicz, Z. Sadowski, T. Farbiszewska, A. Sklodowska, K. Loukola-Ruskeeniemi, J. Langwaldt, J. Palma, P. Norris, et al. 2007. The bioshale project: Search for a sustainable way of exploiting black shale ores using biotechnology. Advanced Materials Research 71–73:42–45. doi:https://doi.org/10.4028/scientific.net/AMR.20-21.42.
  • Dhar, P., M. Thornhill, and H. R. Kota. 2019. Investigation of copper recovery from a new copper deposit (Nussir) in Northern Norway. Mineral Processing and Extractive Metallurgy Review 40 (6):380–89. doi:https://doi.org/10.1080/08827508.2019.1635475.
  • Dreisinger, D. 2006. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy 83:10–20. doi:https://doi.org/10.1016/j.hydromet.2006.03.032.
  • Drzymala, J. 2011. Dextrins as a flotation reagent segregating Polish industrial copper concentrates into two products with differentiated organic carbon content (Dekstryny jako reagent flotacyjny segregujacy polskie przemyslowe koncentraty miedziowe na dwa produkty o zroznicowanej zawartosci wegla organicznego). Przeglad Gorniczy 67 (7–8):104–07. (in Polish).
  • Farrokhpay, S., B. Ndlovu, and D. Bradshaw. 2018. Behavior of talc and mica in copper ore flotation. Applied Clay Science 160:270–75. doi:https://doi.org/10.1016/j.clay.2018.02.011.
  • Foszcz, D., and J. Drzymala. 2011. Differentiation of organic carbon, copper and other metals contents by segregating flotation of final Polish industrial copper concentrates in the presence of dextrin. Physicochemical Problems of Mineral Processing 47:17–26.
  • Ghodrati, S., F. Nakhaei, O. VandGhorbany, and M. Hekmati. 2020. Modeling and optimization of chemical reagents to improve copper flotation performance using response surface methodology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (13):1633–48. doi:https://doi.org/10.1080/15567036.2019.1604874.
  • Kamradt, A., G. Borg, J. Schaefer, S. Kruse, M. Fiedler, P. Romm, A. Schippers, R. Gorny, M. du Bois, C. Bieligk, et al. 2012. An integrated process for innovative extraction of metals from Kupferschiefer mine dumps. Chemie Ingenieur Technik 84:1694–703. doi:https://doi.org/10.1002/cite.201200070.
  • Kamradt, A., S. Walther, J. Schaefer, S. Hedrich, and A. Schippers. 2018. Mineralogical distribution of base metal sulfides in processing products of black shale-hosted Kupferschiefer-type ore. Minerals Engineering 119:23–30. doi:https://doi.org/10.1016/j.mineng.2017.11.009.
  • Kijewski, P., and R. Leszczynski. 2010. Organic carbon in copper ores – Importance and problems (Wegiel organiczny w rudach miedzi – Znaczenie i problem). The Bulletin of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences 79:131–46. (in Polish). http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-AGHM-0023-0016.
  • Konieczny, A., E. Kasinska-Pilut, and R. Pilut. 2009. Technological and technical problems in mineral processing of Polish copper ores at division of concentrators KGHM Polska Miedz SA (Problemy technologiczne i techniczne procesu przerobki mechanicznej rud miedzi w swietle dzialalnosci i roli Oddzialu Zaklady Wzbogacania Rud KGHM Polska Miedz S.A). Cuprum: Czasopismo Naukowo-Techniczne Gornictwa Rud 1–2:31–46. (in Polish).
  • Konieczny, A., W. Pawlos, M. Krzeminska, R. Kaleta, and P. Kurzydlo. 2013. Evaluation of organic carbon separation from copper ore by pre-flotation. Physicochemical Problems of Mineral Processing 49 (1):189–201. doi:https://doi.org/10.5277/ppmp130117.
  • Kucha, H. 2007. Mineralogy and geochemistry of the Lubin-Sieroszowice orebody (Mineralogia kruszcowa i geochemia ciala rudnego zloza Lubin-Sieroszowice). Biuletyn Panstwowego Instytutu Geologicznego 423:77–94. (in Polish).
  • Kutschke, S., A. G. Guezennec, S. Hedrich, A. Schippers, G. Borg, A. Kamradt, J. Gouin, F. Giebner, S. Schopf, M. Schlomann, et al. 2015. Bioleaching of Kupferschiefer blackshale – A review including perspectives of the Ecometals project. Minerals Engineering 75:116–25. doi:https://doi.org/10.1016/j.mineng.2014.09.015.
  • Luszczkiewicz, A., and T. Chmielewski. 2008. Acid treatment of copper sulfide middlings and rougher concentrates in the flotation circuit of carbonate ores. International Journal of Mineral Processing 88 (1–2):45–52. doi:https://doi.org/10.1016/j.minpro.2008.06.003).
  • Luszczkiewicz, A., T. Chmielewski, and A. Konieczny. 2012. Leaching and flotation of concentrate and middlings in flotation circuits of carbonate-shale copper ores. In XXVI International Processing Congress (IMPC) 2012 Proceedings, 03067–75. New Delhi, India, September 24–28. Paper no. 302.
  • Matlakowska, R., D. Ruszkowski, and A. Sklodowska. 2013. Microbial transformations of fossil organic matter of Kupferschiefer black shale–elements mobilization from metalloorganic compounds and metalloporphyrins by a community of indigenous microorganisms. Physicochemical Problems of Mineral Processing 49 (1):223–31. doi:https://doi.org/10.5277/ppmp130120).
  • Oats, W. J., O. Ozdemir, and A. V. Nguyen. 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Minerals Engineering 23 (5):413–19. doi:https://doi.org/10.1016/j.mineng.2009.12.002.
  • Oszczepalski, S., S. Speczik, K. Zielinski, and A. Chmielewski. 2019. The Kupferschiefer deposits and prospects in SW Poland: Past, present and future. Minerals 9 (10):592. doi:https://doi.org/10.3390/min9100592.
  • Pawlos, W., E. Poznar, and M. Krzeminska. 2017. The effect of lithological diversity of feed on process efficiency indexes in KGHM Polska Miedz S.A. concentrator plants. Biuletyn Panstwowego Instytutu Geologicznego 469:67–74. doi:https://doi.org/10.5604/01.3001.0010.0072.).
  • Piestrzynski, A. 2007. Ore mineralisation (Okruszcowanie). In Monografia KGHM Polska Miedz S.A., ed. A. Piestrzynski, A. Banaszak, and M. Zaleska–Kuczmierczyk, 167–96. Lubin: CPBM Cuprum Sp. z o.o. (in Polish).
  • Piestrzynski, A., and J. Pieczonka. 2012. Low temperature ore minerals associations in the Kupferschiefer type deposit, Lubin-Sieroszowice Mining District, SW Poland. Mineralogical Review 62:59–66.
  • Piestrzynski, A., and Z. Sawlowicz. 1999. Exploration for Au and PGE in the Polish Zechstein copper deposits (Kupferschiefer). Journal of Geochemical Exploration 66:17–25. doi:https://doi.org/10.1016/S0375-6742(99)00020-5.
  • Rahfeld, A., and J. Gutzmer. 2017. MLA-based detection of organic matter with iodized epoxy resin—An alternative to Carnauba. Journal of Minerals and Materials Characterization and Engineering 5:198–208. doi:https://doi.org/10.4236/jmmce.2017.54017.
  • Rahfeld, A., R. Kleeberg, R. Möckel, and J. Gutzmer. 2018. Quantitative mineralogical analysis of European Kupferschiefer ore. Minerals Engineering 115:21–32. doi:https://doi.org/10.1016/j.mineng.2017.10.007.
  • Report. 2019. Integrated report for 2019, KGHM Polska Miedz S.A. Investor Relations Department. Accessed May 13, 2021. https://kghm.com/en/node/4991.
  • Rydzewski, A., and W. Sliwinski. 2007. Litologia skal zlozowych. In Monografia KGHM Polska Miedz S.A., ed. A. Piestrzynski, et al, 111–15. Wroclaw, Lubin: KGHM Cuprum CBR.
  • Sawlowicz, Z., A. P. Gize, and M. Rospondek. 2000. Organic matter from Zechstein copper deposits (Kupferschiefer) in Poland. In Organic matter and mineralisation: Thermal alteration, hydrocarbon generation and role in metallogenesis, ed. M. V. Glikson, and M. Mastalerz, 220–42. Springer: Springer Dordrecht.
  • Skorupska, B., A. Wieniewski, and N. Kubacz. 2011. Possibility of copper concentrates production of different organic elements content (Mozliwosci produkcji koncentratow miedziowych o zroznicowanej zawartosci skladnikow organicznych. Gornictwo i Geologia 6 (2):201–16. (in Polish).
  • Skorupska, B., N. Kubacz, A. Wieniewski, B. Rudnicka, and J. Gramala. 2010. Possibility of copper concentrates production of different organic elements content. Polish Patent UP P-394483. (in Polish).
  • Sun, Y., and W. Püttmann. 2004. Composition of kerogen in Kupferschiefer from southwest Poland. Chinese Journal of Geochemistry 23:101–11. doi:https://doi.org/10.1007/BF02868973.
  • Vallejos, P., and J. Yianatos. 2019. Analysis of industrial flotation circuits using top-of-froth and concentrate mineralogy. Mineral Processing and Extractive Metallurgy Review 1–10. doi:https://doi.org/10.1080/08827508.2019.1687468.
  • Vaughan, D. J., M. A. Sweeney, G. Friedrich, R. Diedel, and C. Haranczyk. 1989. The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Economic Geology 84:1003–27. doi:https://doi.org/10.2113/gsecongeo.84.5.1003.
  • Wang, L., Y. Peng, K. Runge, and D. Bradshaw. 2015. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering 70:77–91. doi:https://doi.org/10.1016/j.mineng.2014.09.003.
  • Wieniewski, A., and B. Skorupska. 2016. Technology of polish copper ore beneficiation – Perspectives from the past experience. In E3S Web of Conferences 8, MEC2016, no. 01064. doi:https://doi.org/10.1051/e3sconf/20160801064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.