709
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Co, Ni, Cu, Fe, and Mn Integrated Recovery Process via Sulfuric Acid Leaching from Spent Lithium-ion Batteries Smelted Reduction Metallic Alloys

, &

References

  • Aktas, S., D. J. Fray, O. Burheim, J. Fenstad, and E. Acma. 2013. Recovery of metallic values from spent Li ion secondary batteries. Mineral Processing and Extractive Metallurgy 95–100. doi:10.1179/174328506X109040.
  • Arshad, F., L. Li, K. Amin, E. Fan, N. Manurkar, A. Ahmad, J. Yang, F. Wu, and R. Chen. 2020. A comprehensive review of advancement in recycling anode and electrolyte from spent lithium ion batteries. ACS Sustainable Chemistry & Engineering 8:13527–54. doi:10.1021/acssuschemeng.0c04940.
  • Asadi Dalini, E., G. Karimi, S. Zandevakili, and M. Goodarzi. 2021. A review on environmental, economic and hydrometallurgical process of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review42:451–72. doi:10.1080/08827508.2020.1781628.
  • Chandra, M., D. Yu, Q. Tian, and X. Guo. 2021. Recovery of cobalt from secondary resources: A comprehensive review. Mineral Processing and Extractive Metallurgy Review 1–22. doi:10.1080/08827508.2021.1916927.
  • Chen, L., X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang. 2011. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108:80–86. doi:10.1016/j.hydromet.2011.02.010.
  • Chen, X., B. Fan, L. Xu, T. Zhou, and J. Kong. 2016. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Cleaner Production 112:3562–70. doi:10.1016/j.jclepro.2015.10.132.
  • Devaraj, S., and N. Munichandraiah. 2008. Effect of crystallographic structure of MnO2 on it electrochemical capacitance properties. Journal of Physical Chemistry C 112:4406–17. doi:10.1021/jp7108785.
  • Dizge, N., E. Demirbas, and M. Kobya. 2009. Removal of thiocyanate from aqueous solutions by ion exchange. Journal of Hazardous Materials 166:1367–76. doi:10.1016/j.jhazmat.2008.12.049.
  • Djoudi, N., M. Le Page Mostefa, and H. Muhr. 2019. Precipitation of cobalt salts for recovery in leachates. Chemical Engineering & Technology 42:1492–99. doi:10.1002/ceat.201800696.
  • Ekberg, C., and M. Petranikova. 2015. Lithium batteries recycling. In Lithium process chemistry: Resource, extraction, batteries, and recycling, ed. A. Chagnes and J. Swiatowska, 233–67. 1st ed. Netherlands: Elsevier Inc.
  • Facon, S., F. Adekola, and G. Cote. 2007. Stripping of copper from CYANEX® 301 extract with thiourea–hydrazine–sodium hydroxide solution. Hydrometallurgy 89:297–304. doi:10.1016/j.hydromet.2007.08.003.
  • Fortuny, A., M. T. Coll, and A. M. Sastre. 2012. Use of methyltrioctyl/decylammonium bis 2,4,4-(trimethylpentyl)- phosphinate ionic liquid (ALiCY IL) on the boron extraction in chloride media. Separation and Purification Technology 97:137–41. doi:10.1016/j.seppur.2012.02.037.
  • Guo, F., S. Nishihama, and K. Yoshizuka. 2013. Selective recovery of valuable metals from spent Li-ion batteries using solvent-impregnated resins. Environmental Technology 34:1307–17. doi:10.1080/0959333.2012.746734.
  • Hogfeldt, E. 1982. Stability constants of metal-ion complexes, part A: Inorganic ligands, Vol. 21, 87–88. Oxford: Pergamon Press.
  • Huang, Y., G. Han, J. Liu, W. Chai, W. Wang, S. Yang, and S. Su. 2016. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. Journal of Power Sources 325:555–64. doi:10.1016/j.jpowsour.2016.06.072.
  • Lin, J., C. Liu, H. Cao, Y. Yang, R. Chen, L. Li, and Z. Sun. 2019. Environmentally benign process on selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chemistry 21:5904–13. doi:10.1039/c9gc01350d.
  • Liu, Y., S. H. Nam, and M. S. Lee. 2014. Stripping of Fe(III) from the loaded mixture of D2EHPA and TBP with sulphuric acid containing reducing agents. Bulletin of the Korean Chemical Society 35:2109–13. doi:10.5012/bkcs.2014.35.7.2109.
  • Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun. 2018. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6:1504–21. doi:10.1021/acssuschemeng.7b03811.
  • Makuza, B., Q. Tian, X. Guo, K. Chattopadhyay, and D. Yu. 2021. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources 491:229622. doi:10.1016/j.jpowsour.2021.229622.
  • Mansur, M. B., A. S. Guimaraes, and M. Petrenikova. 2021. An overview on the recovery of cobalt from end-of-life lithum ion batteries. Mineral Processing and Extractive Metallurgy Review 1–21. doi:10.1080/08827508.2021.1883014.
  • Marc, P., R. Custelcean, G. S. Groenewold, J. R. Klaehn, D. R. Peterman, and L. H. Delmau. 2012. Degradation of CYANEX 301 in Contact with Nitric Acid Media. Industrial & Engineering Chemistry Research 51:13238–44. doi:10.1021/ie300757r.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2019. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 1–19. doi:10.1080/08827508.2019.1668387.
  • Meshram, P., and B. D. Pandey. 2018. Advanced review on extraction of nickel from primary and secondary sources. Mineral Processing and Extractive Metallurgy Review 1–37. doi:10.1080/08827508.2018.1514300.
  • Moon, H. S., S. J. Song, T. T. Tran, and M. S. Lee. 2020. Solvent extraction separation of Co(II) and Ni(II) from weak hydrochloric acid solution with ionic liquid synthesized from organophosphorus acids. Resources Recycling 29:55–63. doi:10.7844/kirr.2020.29.5.55.
  • Moon, H. S., S. J. Song, T. T. Tuan, and M. S. Lee. 2021. Leaching of cobalt and nickel from metallic mixtures by inorganic and organic acid solutions. Resources Recycling 30:53–60. doi:10.7844/kirr.2021.30.2.53.
  • Nasu, A., H. Takagi, Y. Ohmiya, and T. Sekine. 1999. Solvent extraction of iron(II) and iron (III) as anionic thiocyanate complexes with tetrabutylammonium ions into chloroform. Analytical Sciences 15:177–80. doi:10.2116/analsci.15.177.
  • Nayl, A. A. 2010. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336. Journal Hazardous Materials 173:223–30. doi:10.1016/j.jhazmat.2009.08.072.
  • Nguyen, V. N. H., and M. S. Lee. 2020. Separation of Co(II), Ni(II), Mn(II) and Li(I) from synthetic sulphuric acid leaching solution of spent lithium ion batteries by solvent extraction. Journal of Chemical Technology and Biotechnology 96:1205–17. doi:10.1002/jctb.6632.
  • Onorato, R. M., D. E. Otten, and R. J. Saykally. 2009. Adsorption of thiocyanate ions to the dodecanol/water interface characterized by UV second harmonic generation. Proceedings of the National Academy of Sciences of United States of America 106:15176–80. doi:10.1073/pnas.0904800106.
  • Othman, E. A., A. G. J. Van Der Ham, H. Miedema, and S. R. A. Kersten. 2020. Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate]. Separation and Purification Technology 252:117435. doi:10.1016/j.seppur.2020.117435.
  • Preston, J. S. 1982. Solvent extraction of Cobalt(II) and Nickel(II) by a quaternary ammonium thiocyanate. Separation Science and Technology 17:1697–718. doi:10.1080/01496398208055652.
  • Rioyo, J., S. Tuset, and R. Grau. 2020. Lithium extraction from spodumene by the traditional sulphuric acid process: A review. Mineral Processing and Extractive Metallurgy Review 1–9. doi:10.1080/08827508.2020.1798234.
  • Sattar, R., S. Ilyas, H. N. Bhatti, and A. Ghaffar. 2019. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries. Separation and Purification Technology 209:725–33. doi:10.1016/j.seppur.2018.09.019.
  • Silberberg, M. S. 2007. Principles of general chemistry, A–14. 1st ed. New York: McGraw-Hill.
  • Silva, R. A., Y. Zhang, K. Hawboldt, and L. A. James. 2019. Study on iron-nickel separation using ion exchange resins with different functional groups for potential iron sub-production. Mineral Processing and Extractive Metallurgy Review 1–15. doi:10.1080/08827508.2019.1678155.
  • Sovacool, B. K., S. H. Ali, M. Bazilian, B. Radley, B. Nemery, J. Okatz, and D. Mulvaney. 2020. Sustainable minerals and metals for a low-carbon future. Science 367:30–33. doi:10.1126/science.aaz6003.
  • Takagi, J., and K. Ishigure. 1985. Thermal decomposition of hydrogen peroxide and its effect on reactor water monitoring of boiling water reactors. Nuclear Science and Engineering 89:177–86. doi:10.13182/nse85-a18191.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2020a. Separation of cobalt, nickel, and copper from synthetic metallic alloy by selective dissolution with acid solutions containing oxidizing agent. Mineral Processing and Extractive Metallurgy Review 1–13. doi:10.1080/08827508.2020.1858079.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2021. Recovery of cobalt, nickel and copper compounds from UHT processed spent lithium-ion batteries by hydrometallurgical process. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2021.1910508.
  • Tran, T. T., N. Azra, M. Iqbal, and M. S. Lee. 2020b. Synthesis of succinimide based ionic liquids and comparison of extraction behavior of Co(II) and Ni(II) with bi-functional ionic liquids synthesized by Aliquat336 and organophosphorus acids. Separation and Purification Technology 238:116496. doi:10.1016/j.seppur.2019.116496.
  • Vanitha, M., and N. Balasubramanian. 2013. Waste minimization and recovery of valuable metals from spent lithium-ion batteries - a review. Environmental Technology Reviews 2:101–15. doi:10.1080/21622515.2013.853105.
  • Velázquez-Martínez, O., J. Valio, A. Santasalo-Aarnio, M. Reuter, and R. Serna-Guerrero. 2019. A critical review of lithium–ion battery recycling processes from a circular economy perspective. Batteries 5:68. doi:10.3390/batteries5040068.
  • Vogel, A. I. 1989. Textbook of quantitative chemical analysis, 295–96. 5th ed. New York: Longman scientific & Technical.
  • Wang, R. C., Y. C. Lin, and S. H. Wu. 2009. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99:194–201. doi:10.1016/j.hydromet.2009.08.005.
  • Xu, C., Q. Dai, L. Gaines, M. Hu, A. Tukker, and B. Steubing. 2020. Future material demand for automotive lithium-based batteries. Communication Materials 1:99. doi:10.1038/s43246-020-00095-x.
  • Xu, J., H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang. 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources 177:512–27. doi:10.1016/j.jpowsour.2007.11.074.
  • Yu, S., B. Zhang, J. Xiong, Z. Yao, D. Wu, J. Liu, S. Xu, and J. Tang. 2021. Pyrolysis kinetic study of cathode material derived from spent lithium ion batteries (LIBs): Comparison of different models. Journal of the Air & Waste Management Association 71:1–7. doi:10.1080/10962247.2020.1832623.
  • Yu, W., L. Campos, T. Shi, G. Li, and N. Graham. 2015. Enhanced removal of manganese in organic-rich surface water by combined sodium hypochlorite and potassium permanganate during drinking water treatment. RSC Advances 5:27970–77. doi:10.1039/c5ra01643f.
  • Zeng, X., J. Li, and N. Singh. 2014. Recycling of spent lithium-ion battery: Acritical review. Critical Reviews in Environmental Science and Technology 44:1129–65. doi:10.1080/10643389.2013.763578.
  • Zhang, Y., W. Wang, Q. Fang, and S. Xu. 2020. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Management 102:847–55. doi:10.1016/j.wasman.2019.11.045.
  • Zhao, Q., L. Hu, W. Li, C. Liu, M. Jiang, and J. Shi. 2020. Recovery and regeneration of spent lithium-ion batteries from new energy vehicles. Frontiers in Chemistry 8:807. doi:10.3389/fchem.2020.00807.
  • Zhao, Y., O. Pohl, A. I. Bhatt, G. E. Collis, P. J. Mahon, T. Ruther, and A. F. Hollenkamp. 2021. A review on battery market trends, second-life reuse, and recycling. Sustainable Chemistry 2 (167–205). doi: 10.3390/suschem2010011.
  • Zheng, X., Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, and Z. Sun. 2018. A mini-review on metal recycling from spent lithium ion batteries. Engineering 4:361–70. doi:10.1016/j.eng.2018.05.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.