1,166
Views
4
CrossRef citations to date
0
Altmetric
Review

Biotechnological Avenues in Mineral Processing: Fundamentals, Applications and Advances in Bioleaching and Bio-beneficiation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel-Azeem, A. M., F. M. Salem, M. A. Abdel-Azeem, N. A. Nafady, M. T. Mohesien, and E. A. Soliman. 2016. Biodiversity of the Genus Aspergillus in Different Habitats. In New and Future Developments in Microbial Biotechnology and Bioengineering, ed. Vijai Kumar, G. (Elsevier), pp. 3–28.
  • Abdel-Khalek, M. A., and A. A. El-Midany. 2013. Application of Bacillus subtilis for reducing ash and sulfur in coal. Environmental Earth Sciences 70:753–60.
  • Abdollahi, H., M. Noaparast, S. Z. Shafaei, A. Akcil, S. Panda, M. H. Kashi, and P. Karimi. 2019. Prediction and optimization studies for bioleaching of molybdenite concentrate using artificial neural networks and genetic algorithm. Minerals Engineering 130:24–35.
  • Abhilash, and B. D. Pandey. 2013. Microbially assisted leaching of uranium—a review. Mineral Processing and Extractive Metallurgy Review 34 (2):81–113.
  • Abhilash, B. D. Pandey, and K. A. Natarajan. 2015. Microbiology for Minerals, Metals, Materials and the Environment. Boca Raton, FL: CRC Press. doi:10.1201/b18124.
  • Acevedo, F. 2002. Present and future of bioleaching in developing countries. EJB Electronic Journal of Biotechnology 5:1–4.
  • Acevedo, F., and J. C. Gentina. 2007. Bioreactor Design Fundamentals And Their Application To Gold Mining. In Microbial Processing of Metal Sulfides, ed. E. R. Donati and W. Sand. Dordrecht: Springer. doi:10.1007/1-4020-5589-7_8.
  • Agunbiade, M., C. Pohl, and O. Ashafa. 2018. Bioflocculant production from Streptomyces platensis and its potential for river and wastewater treatment. Brazilian Journal of Microbiology 49:731–41.
  • Ahmed, E., M. Salah, A. K. Mohamed, A. K. Nagui, and M. Ayman. 2013. Dolomite−apatite separation by amphoteric collector in presence of bacteria. Journal of Central South University 20:1645–52.
  • Akcil, A., Y. Ibrahim, P. Meshram, S. Panda, and Abhilash. 2021. Hydrometallurgical Recycling Strategies for Recovery of Rare Earth Elements from Consumer Electronic Scraps: A Review. Journal of Chemical Technology and Biotechnology 96:1785–97. doi:10.1002/jctb.6739.
  • Akcil, A., Z. Sun, and S. Panda. 2020. COVID-19 disruptions to tech-metals supply are a wake-up call. Nature 587 (7834):365–67.
  • Almárcegui, R. J., C. A. Navarro, A. Paradela, J. P. Albar, D. Von Bernath, and C. A. Jerez. 2014a. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur. Research in Microbiology. doi:10.1016/j.resmic.2014.07.005.
  • Almárcegui, R. J., C. A. Navarro, A. Paradela, J. P. Albar, D. Von Bernath, and C. A. Jerez. 2014b. New copper resistance determinants in the extremophile Acidithiobacillus ferrooxidans: a quantitative proteomic analysis. Journal of Proteome Research 13:946–60. doi:10.1021/pr4009833.
  • Anderson, C. G. 2012. The metallurgy of antimony. Chemie der Erde 72:3–8.
  • Andrews, G. 1998. The optimal design of bioleaching processes. Mineral Processing and Extractive Metallurgy Review 19 (1):149–65.
  • Argumedo-Delira, R., M. J. Gómez-Martínez, and R. Uribe-Kaffure. 2020. Fungal tolerance: An alternative for the selection of fungi with potential for the biological recovery of precious metals. Applied Sciences 10:8096. doi:10.3390/app10228096.
  • Arshadi, M., and S. M. Mousavi. 2015. Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium. Bioresource Technology 175:315–24.
  • Arslan, V. 2019. Comparison of the Effects of Aspergillus niger and Aspergillus ficuum on the Removal of Impurities in Feldspar by Bio-beneficiation. Applied Biochemistry and Biotechnology 189:437–47. doi:10.1007/s12010-019-03029-7.
  • Assadi, A. B., F. D. Ardejani, G. H. Karami, B. D. Azma, A. D. Reza, and A. Mahmood. 2008. Heavy Metal Pollution Problems in the Vicinity of Heap Leaching No. 3 of Sarcheshmeh Porphyry Copper Mine. In: Conference: 10th International Mine Water Association Congress At: Karlovy Vary, Czech Republic.
  • Bal, B., S. Ghosh, and A. P. Das. 2019. Microbial recovery and recycling of manganese waste and their future application: a review. Geomicrobiology journal 36 (1):85–96.
  • Barnett, M. J., B. Palumbo-Roe, and S. P. Gregory. 2018. Comparison of Heterotrophic Bioleaching and Ammonium Sulfate Ion Exchange Leaching of Rare Earth Elements from Madagascar Ion-Adsorption Clay. Minerals 8:236. doi:10.3390/min8060236.
  • Bartzas, G., and K. Komnitsas. 2015. Life cycle assessment of ferronickel production in Greece. Resources, Conservation and Recycling 105:113–22.
  • Batty, J. D., and G. V. Rorke. 2005. Development and commercial demonstration of the BioCOP™ thermophile process. In Proceedings of the 16th International Biohydrometallurgy Symposium, ed. S. T. L. Harrison, D. E. Rawlings, and J. Petersen, 153–61. Cape Town, South Africa: Compress. September 25–29. www.compress.co.za.
  • Behera, S. K., and A. F. Mulaba-Bafubiandi. 2017. Microbes assisted mineral flotation a future prospective for mineral processing industries: A review. Mineral Processing and Extractive Metallurgy Review 38:96–105. doi:10.1080/08827508.2016.1262861.
  • Behera, S. K., P. P. Panda, S. Singh, N. Pradhan, L. B. Sukla, and B. K. Mishra. 2011. Study on reaction mechanism of bioleaching of nickel and cobalt from lateritic chromite overburdens. International biodeterioration & biodegradation 65:1035–42.
  • Bleeze, B., J. Zhao, and S. L. Harmer. 2018. Selective Attachment of Leptospirillum ferrooxidans for Separation of Chalcopyrite and Pyrite through Bio-Flotation. Minerals 8:86. doi:10.3390/min8030086.
  • Bobadilla-Fazzini, R. A., G. Levican, and P. Parada. 2011. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Applied Microbiology and Biotechnology 89:771–80. doi:10.1007/s00253-010-3063-8.
  • Botero, A. E. C., M. L. Torem, and L. M. S. Mesquita. 2007. Fundamental studies of Rhodococcus opacus as a biocollectorof calcite and magnesite. Minerals Engineering 20:1026–32.
  • Bournival, G., F. Zhang, and S. Ata. 2021. Coal Flotation in Saline Water: Effects of Electrolytes on Interfaces and Industrial Practice. Mineral Processing and Extractive Metallurgy Review 42:53–73.
  • Brandl, H. 2001. Microbial Leaching of Metals. In Biotechnology Set, ed. H.-J. Rehm and G. Reed, 191–224. doi:10.1002/9783527620937.ch8.
  • Canty, M. 1998. Overview of the sulfate-reducing bacteria demonstration project under the Mine Waste Technology Program. Mineral Processing and Extractive Metallurgy Review 19 (1):61–80.
  • Cardenas, J. P., J. Valdes, R. Quatrini, F. Duarte, and D. S. Holmes. 2010. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Applied Microbiology and Biotechnology 88:605–20.
  • Castro, L., M. L. Blázquez, F. González, and J. A. Muñoz. 2020. Bioleaching of Phosphate Minerals Using Aspergillus niger: Recovery of Copper and Rare Earth Elements. Metals 10:978. doi:10.3390/met10070978.
  • Çelik, H. 2005. Using Biooxidation Method for the Pretreatment of Refractory Gold Ores/Concentrates. Madencilik 44:5–46.
  • Chandraprabha, M. N., K. A. Natarajan, and P. Somasundaran. 2004. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans. Journal of Colloid and Interface Science 276:323–32.
  • Chandraprabha, M., and K. A. Natarajan. 2009. Microbially Induced Mineral Beneficiation. Mineral Processing and Extractive Metallurgy Review 31:1–29.
  • Chen, J., L. Leng, C. Ye, Q. Lu, M. Addy, J. Wang, J. Liu, P. Chen, R. Ruan, and W. Zhou. 2018. A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresource Technology 259:181–90.
  • Chiang, Y. W., R. M. Santos, A. Monballiu, K. Ghyselbrecht, J. A. Martens, M. L. T. Mattos, T. V. Gerven, and B. Meesschaert. 2013. Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials. Minerals Engineering 48:116–25.
  • Chiodza, K. G., S. T. L. Harrison, and M. A. Fagan-Endres. 2020. Algal Lipids as Biocollector for Recovery of Coal from Fine Coal Waste by Froth Flotation. Minerals 10:70. doi:10.3390/min10010070.
  • Clark, M. E., J. Batty, C. van Buuren, D. Dew, and D. Eamon. 2005. Biotechnology in Minerals processing: technological breakthroughs creating value. In Proceedings of the 16th International Biohydrometallurgy Symposium, ed. S. T. L. Harrison, D. E. Rawlings, and J. Petersen, 17–24. Cape Town, South Africa: Produced by Compress. September 2529 . September 2529 www.compress.co.za.
  • Consuegra, G. L., S. Kutschke, M. Rudolph, and K. Pollmann. 2020. Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Minerals Engineering 145:106062.
  • Coram, N. J., and D. E. Rawlings. 2002. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp.nov.dominates South African commercial biooxidation tanks that operate at 40°C. Applied and Environmental Microbiology 68:838–45.
  • Cupp, C. R. 1985. After thiobacillus ferrooxidans—What? Canadian Metallurgical Quarterly 24 (2):109–13.
  • Das, A., and B. Sarkar. 2018. Advanced gravity concentration of fine particles: A review. Mineral Processing and Extractive Metallurgy Review 39 :359–94.
  • Das, T., S. Ayyappan, and G. R. Chaudhury. 1999. Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms. Bio Metals 12:1–10.
  • Demergasso, C., F. Galleguillos, P. Soto, M. Serón, and V. Iturriaga. 2010. Microbial succession during a heap bioleaching cycle of low grade copper sulfides. Hydrometallurgy 104:382–90. doi:10.1016/j.hydromet.2010.04.016.
  • Deveci, H. 2004. Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors. Hydrometallurgy 71:385–96.
  • Devi, K. K., Natarajan, K. A. 2015. Production and characterization of bioflocculants for mineral processing applications. International Journal of Mineral Processing, 137, 15–25. https://doi.org/10.1016/j.minpro.2015.02.007
  • Devi, N., and L. B. Sukla. 2019. Studies on liquid-liquid extraction of yttrium and separation from other rare earth elements using bifunctional ionic liquids. Mineral Processing and Extractive Metallurgy Review 40 (1):46–55.
  • Dew, D., and G. Miller 1997. The Bio NIC process: bioleaching of mineral sulfide concentrates for recovery of nickel. In Proceedings of the International Biohydrometalurgy Symposium and Biomine, 97. Sydney, Glenside, Australia: Australian Mineral Foundation Inc. M7.1.1-M7.1.9.4. August 4–6.
  • Diao, M., T. A. Nguyen, E.Taran, S. Mahler, and A. V. Nguyen. 2014. Differences in adhesion of At.thiooxidans and At.ferrooxidans on chalcopyrite as revealed by atomic force microscopy with bacterial probes. Minerals Engineering 61:9–15.
  • Díaz-López, C. V., E. T. Pecina-Treviño, and E. Orrantia-Borunda. 2012. A study of bioflotation of chalcopyrite and pyrrhotite mixtures in presence of L. ferrooxidans. Canadian Metallurgical Quarterly 51 (2):118–25.
  • Dong, Y., Y. Liu, H. Lin, and C. Liu. 2019. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus. Transactions of Nonferrous Metals Society of China 29:849–58.
  • Dunne, W. M. 2002. Bacterial adhesion: seen any good biofilms lately? Clinical Microbiology Reviews 15:155–66.
  • Dwyer, R., W. J. Bruckard, S. Rea, and R. J. Holmes. 2012. Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation. Mineral Processing and Extractive Metallurgy 121:65–71. doi:10.1179/1743285512Y.0000000005.
  • El-Sayed, S., E. H. El-Shatoury, N. A. Abdel-Khalek, A. Abdel-Moteli, and M. Abdel-Khalek. 2021. Influence of Bacillus cereus-gold interaction on bio-flotation of gold in the presence of potassium butyl xanthate. Physicochemical Problems of Mineral Processing 11:13005–18. doi:10.33263/BRIAC115.1300513018.
  • Erust, C., A. Akcil, A. Tuncuk, and S. Panda. 2020. Intensified acidophilic bioleaching of mutli-metals from Waste Printed Circuit Boards (WPCBs) of spent mobile phones. Journal of Chemical Technology and Biotechnology 95:2272–85.
  • Esther, J., S. Panda, L. B. Sukla, N. Pradhan, C. K. Sarangi, and T. Subbaiah. 2015. Enhanced recovery of nickel from chromite overburden using Dissimilatory Fe (III) reducers: A novel bio-hydrometallurgical (BRAL) approach. Hydrometallurgy 155:110–17.
  • Esther, J., S. Panda, S. K. Behera, L. B. Sukla, N. Pradhan, and B. K. Mishra. 2013. Effect of dissimilatory Fe (III) reducers on bioreduction and nickel-cobalt recovery from Sukinda chromite-overburden. Bioresource Technology 146:762–66.
  • Etemadifar, Z., S. S. Etemadzadeh, and G. Emtiazi. 2019. A novel approach for bioleaching of sulfur, iron, and silica impurities from coal by growing and resting cells of Rhodococcus spp. Geomicrobiology Journal 36:123–29.
  • Falconer, A. 2003. Gravity separation: Old technique/New methods. Physical Separation in Science and Engineering 12:31–48.
  • Farahat, M., and T. Hirajima. 2012. Hydrophilicity of Ferroplasma acidiphilum and its effect on the depression of pyrite. Minerals Engineering 36–38:242–47.
  • Farahat, M., T. Hirajima, and K. Sasaki. 2010. Adhesion of Ferroplasma acidiphilum onto pyrite calculated from the extended DLVO theory using the van Oss–Good–Chaud hury approach. Journal of Colloid and Interface Science 349:594–601.
  • Farahat, M., T. Hirajima, K. Sasaki, and K. Doi. 2009. Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior. Colloids and surfaces. B, Biointerfaces 74:140–49.
  • Farahat, M., T. Hirajima, K. Sasaki, Y. Aiba, and K. Doi. 2008. Adsorption of SIP E.coli onto quartz and its applications in froth flotation. Minerals Engineering 21:389–95.
  • Farghaly, M. G., N. A. Abdel-Khalek, M. A. Abdel-Khalek, K. A. Selim, and S. S. Abdallah. 2021. Physicochemical study and application for pyrolusite separation from high manganese-iron ore in the presence of microorganisms. Physicochemical Problems of Mineral Processing 57:273–83.
  • Farjana, S. H., N. Huda, and M. A. P. Mahmud. 2019. Life cycle analysis of copper-gold-lead-silver-zinc beneficiation process. Science of the Total Environment 659:41–52.
  • Fathollahzadeh, H., H. N. Khaleque, J. Eksteen, A. H. Kaksonen, and E. L. J. Watkin. 2019. Effect of glycine on bioleaching of rare earth elements from Western Australian monazite by heterotrophic and autotrophic microorganisms. Hydrometallurgy 189:105137.
  • Fischer, K., and H. P. Bipp. 2002. Removal of heavy metals from soil components and soils by natural chelating agents: Part II. Soil extraction by sugar acids. Water, air, and soil pollution 138:271–88.
  • Georgiev, P., I. Spasova, V. Groudeva, M. Nicolova, A. Lazarova, M. Iliev, R. Ilieva, and S. Groudev. 2017. Bioleaching of Valuable Components from a Pyrometallurgical Final Slag. Solid State Phenomena 262:696–99. www.scientific.net
  • Ghashoghchi, R. A., M. R. Hosseini, and A. Ahmadi. 2017. Effects of microbial cells and their associated extracellular polymeric substances on the bio-flocculation of kaolin and quartz. Applied Clay Science 138:81–88.
  • Ghorbani, Y., J.-P. Franzidis, and J. Petersen. 2016. Heap leaching technology—Current state, innovations, and future directions: A review. Mineral Processing and Extractive Metallurgy Review 37:73–119.
  • Ghorbani, Y., M. Becker, A. Mainza, J.-P. Franzidi, and J. Petersen. 2011. Large particle effects in chemical/biochemical heap leach processes-A review. Minerals Engineering 24:1172–84.
  • Giebner, F., S. Eisen, M. Schlömann, and S. Schopf. 2017. Measurements of dissolved oxygen in bioleaching reactors byoptode application. Hydrometallurgy 168:64–68.
  • Giese, E. C., H. L. Carpen, L. C. Bertolino, and C. L. Schneider. 2019. Characterization and bioleaching of nickel laterite ore using Bacillus subtilis strain. Biotechnology Progress 35:2860.
  • Gjersing, E. L., J. L. Herberg, J. Horn, C. M. Schaldach, and R. S. Maxwell. 2007. NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Analytical Chemistry 79:8037–45.
  • Halinen, A.-K., N. Rahunen, A. H. Kaksonen, and J. A. Puhakka. 2009. Heap bioleaching of a complex sulfide ore Part I: Effect of pH on metal extraction and microbial composition in pH controlled columns. Hydrometallurgy 98:92–100.
  • Hołda, A., and A. Młynarczykowska. 2014. Bioflotation as an Alternative Method for Desulphurization of Fine Coals - Part I. Journal of the Polish Mineral Engineering Society 15: 263–68.
  • Hosseini, M. R., A. Bahrami, A. Ahmadi, M. R. Azizinia, and E. Azimi. 2019. Application of differential bio-flocculation in the removal of hematite and goethite from kaolin and quartz. Chemical Engineering Communications 206:815–27.
  • Hosseini, M. R., S. M. Sadeghieh, M. R. Azizinia, and S. H. Tabatabaei. 2020. Biological separation of quartz from kaolinite using Bacillus licheniformis. Separation Science and Technology 55:2061–71.
  • Hosseini, T. R., M. Kolahdoozan, Y. S. M. Tabatabaei, M. Oliazadeh, M. Noaparast, A. Eslami, Z. Manafi, and A. Alfantazi. 2005. Bioflotation of Sarcheshmeh copper ore using Thiobacillus Ferrooxidans bacteria. Minerals Engineering 18:371–74.
  • Hu, T., Y. Yang, M. Zhang, Y. Gao, Q. Cheng, and H. Ji. 2019. Biodesulfurization of coal using Rhodococcus erythropolis SX-12 and Acidithiobacillus ferrooxidans GF: A two-step approach. Energy Science &Engineering 7:162–69.
  • Hunter, R. M., Stewart, F. M., Oarsow, T., Fogelson, M. L., Mogk, D. W., Abott, E. H., and Young, C. A. 1998. New alternative to cyanidation: biocatalyzed bisulfide leaching. Mineral Processing and Extractive Metallurgy Review 19 (1):183–97. https://doi.org/10.1080/08827509608962439.
  • Ijaz, K., J. K. Wattoo, B. Zeshan, T. Majeed, T. Riaz, S. Khalid, S. Baig, and M. A. Saleem. 2017. Potential impact of microbial consortia in biomining and bioleaching of commercial metals. Advancements in Life Sciences 5:13–18.
  • Ishii, N., K. Nakahigashi, T. Baba, M. Robert, T. Soga, A. Kanai, T. Hirasawa, M. Naba, K. Hirai, A. Hoque, et al. 2007. Multiple highthroughput analyses monitor the response of E. coli to perturbations. Science 316:593–97.
  • Issotta, F., P. A. Galleguillos, A. Moya-Beltrán, C. S. Davis-Belmar, G. Rautenbach, P. C. Covarrubias, M. Acosta, F. J. Ossandon, Y. Contador, D. S. Holmes, et al. 2016. Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile. Standards in Genomic Sciences 11:19. doi:10.1186/s40793-016-0142-1.
  • Jafari, M., H. Abdollahi, S. Z. Shafaei, M. Gharabaghi, H. Jafari, A. Akcil, and S. Panda. 2019. Acidophilic Bioleaching: A Review on the process and effect of organic and in-organic reagents & materials on its efficiency. Mineral Processing and Extractive MetallurgyReview 40:87–107.
  • Jain, N., and D. K. Sharma. 2004. Biohydrometallurgy for nonsulfidic minerals—A review. Geomicrobiology Journal 21:135–44.
  • Johnson, D. B. 2018. The evolution, current status, and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors. Minerals 2018(8):343. https://doi.org/10.3390/min8080343
  • Jiang, J., W. Jin, R. Tu, S. Han, Y. Ji, and X. Zhou. 2021. Harvesting of microalgae Chlorella pyrenoidosa by Bio‑flocculation with bacteria and filamentous fungi. Waste and Biomass Valorization 12:145–54. doi:10.1007/s12649-020-00979-6.
  • Jun, Y. H., Y. S. Nee, C. W. Qi, S. Chieng, and K. S. How. 2020. Bioleaching of Kaolin with Bacillus cereus: Effect of bacteria source and concentration on Iron removal. Journal of Sustainability Science and Management 15:91–99.
  • Justice, N. B., A. Norman, C. T. Brown, A. Singh, B. C. Thomas, and J. F. Banfield. 2014. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms. BMC Genomics 15:1107.
  • Karthiga, D. K., and K. A. Natarajan. 2015. Production and characterization of bioflocculants for mineral processing applications. International Journal of Mineral Processing 137:15–25.
  • Karwowska, E., D. A. Morzuch, M. Łebkowska, A. Tabernacka, M. Wojtkowska, A. Telepko, and A. Konarzewska. 2014. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. Journal of Hazardous Materials 264:203–10.
  • Khoshdast, H., A. Sam, and Z. Manafi. 2012. The use of rhamnolipid biosurfactants as a frothing agent and a sample copper ore response. Minerals Engineering 26:41–49.
  • Kiczma, J. F., T. Farbiszewska, and M. Bak. 2004. Bioleaching of metals from polish black shale in neutral medium. Physicochemical Problems of Mineral Processing 38:273–80.
  • Kim, D.-J., H. Srichandan, C. S. Gahan, and S.-W. Lee. 2012. Thermophilic bioleaching of spent petroleum refinery catalyst using Sulfolobus metallicus. Canadian Metallurgical Quarterly 51:403–12.
  • Kim, G., J. Choi, R. A. Silva, Y. Song, and H. Kim. 2017. Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus. Hydrometallurgy 168:94–102.
  • Kim, G., K. Park, J. Choi, A. Gomez-Flores, Y. Han, S. Q. Choi, and H. Kim. 2015. Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. International Journal of Mineral Processing 143:98–104.
  • Kinnunen, P., H. Miettinen, and M. Bomberg. 2020b. Review of Potential Microbial Effects on Flotation. Minerals 10:533. doi:10.3390/min10060533.
  • Kinnunen, P., J. Mäkinen, M. Salo, R. Soth, and K. Komnitsas. 2020a. Efficiency of Chemical and Biological Leaching of Copper Slag for the Recovery of Metals and Valorisation of the Leach Residue as Raw Material in Cement Production. Minerals 10:654. doi:10.3390/min10080654.
  • Kolenčík, M., H. Vojtková, M. Urík, M. Čaplovičová, J. Pištora, M. Cada, A. Babičová, H. Feng, Y. Qian, and I. Ramakanth. 2017. Heterotrophic Bacterial Leaching of Zinc and Arsenic from Artificial Adamite. Water, air, and soil pollution 228:224.
  • Komnitsas, C., and F. D. Pooley. 1990. Bacterial oxidation of an arsenical gold sulphide concentrate from olympias, Greece. Minerals Engineering 3:295–306.
  • Komnitsas, K., E. Petrakis, G. Bartzas, and V. Karmali. 2019. Column leaching of low-grade saprolitic laterites and valorization ofleaching residues. Science of the Total Environment 665:347–57.
  • Kremser, K., S. Thallner, H. Schoen, S. Weiss, C. Hemmelmair, W. Schnitzhofer, A. Aldrian, and G. M. Guebitz. 2020. Stirred-tank and heap-bioleaching of shredder-light-fractions (SLF) by acidophilic bacteria. Hydrometallurgy 193:105315.
  • Kusumaningrum, S. B. C., I. W. Warmada, W. Wilopo, and E. Retnaningrum. 2020. Bioleaching Ability of Fungi Isolated from an Indonesian Sulfurous River Sediment. Indonesian Journal of Chemistry 20:810–17.
  • Kuyucak, N. 1998. Minerals Bioprocessing, Biorecovery and Bioremediation in Mining. Mineral Processing and Extractive Metallurgy Review 19 (1):1–4.
  • Lal, A., S. Banerjee, and D. Das. 2021. Aspergillus sp. assisted bioflocculation of Chlorella MJ 11/11 for the production of biofuel from the algal fungal co-pellet Separation and Purification Technology. Separation and Purification Technology 118320. doi:10.1016/j.seppur.2021.118320.
  • Leahy, M. J., M. P. Schwarz, and M. R. Davidson. 2006. An air sparging CFD model for heap bioleaching of chalcocite. Applied Mathematical Modelling 30:1428–44.
  • Leahy, M. J., M. R. Davidson, and M. P. Schwarz. 2007. A model for heap bioleaching of chalcocite with heat balance: Mesophiles and moderate thermophiles. Hydrometallurgy 85:24–41.
  • Lee, J., D.-H. Cho, R. Ramanan, B.-H. Kim, H.-M. Oh, and H.-S. Kim. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresource Technology 131:195–201.
  • Li, J., H. Yang, L. Tong, and W. Sand. 2021. Some Aspects of Industrial Heap Bioleaching Technology: From Basics to Practice. Mineral Processing and Extractive Metallurgy Review 1–19. doi:10.1080/08827508.2021.1893720.
  • Li, W.-J., S. Liu, Y.-S. Song, J.-K. Wen, G.-Y. Zhou, and Y. Chen. 2016. Comprehensive recovery of gold and base-metal sulfide minerals from alow-grade refractory ore. International Journal of Minerals, Metallurgy and Materials 23:1377.
  • Li, Y., Y. Xu, L. Liu, P. Li, Y. Yan, T. Chen, T. Zheng, and H. Wang. 2017. Flocculation mechanism of Aspergillus niger on harvesting of Chlorella vulgaris biomass. Algal Research 25:402–12.
  • Liu, C., D. Sun, J. Liu, J. Zhu, and W. Liu. 2021. Recent advances and perspectives in eforts to reduce the production and application cost of microbial focculants. Bioresources and Bioprocessing 8:51.
  • Liu, Q., H. Li, and L. Zhou. 2008. “Galvanic interactions between metal sulfide minerals in a flowing system: Implications for mines environmental restoration.” Applied Geochemistry 23 (8):2316–2323. doi:10.1016/j.apgeochem.2008.02.024
  • Liu, X., B. Chen, J. Chen, L. Zou, M. Zhang, J. Wen, and W. Liu. 2016. Biogeographical distribution of acidophiles and their effects around the Zijinshan heap bioleaching plant. Chemistry and Ecology 32:419–31.
  • Lloyd, J. R., J. A. Cole, and L. E. Macaskie. 1997. Reduction and removal of heptavalent technetium from solution by Escherichia coli. Journal of bacteriology 179 (6):2014–21.
  • Lopez, L. Y., A. G. Merma, M. L. Torem, and G. H. Pino. 2015. Fundamental aspects of hematite flotation using the bacterial strain Rhodococcus ruber as bioreagent. Minerals Engineering 75:63–69.
  • Luo, S., X. Wu, H. Jiang, M. Yu, Y. Liu, A. Min, W. Li, and R. Ruan. 2019. Edible fungi-assisted harvesting system for efficient microalgae bioflocculation. Bioresource Technology 282:325–30.
  • Lv, J., B. Guo, J. Feng, Q. Liu, F. Nan, X. Liu, and S. Xie. 2019b. Integration of waste water treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX. Journal of Cleaner Production 240:118211.
  • Lv, Y., J. Li, H. P. Ye, D. Y. Du, C. Gan, L. G. Wuri, P. Sun, and J. X. Wen. 2019a. Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria. Bioprocess and Biosystems Engineering 42:1819–28.
  • Lv, Y., J. Li, H. Ye, D. Du, P. Sun, M. Ma, and T. C. Zhang. 2020. Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: Impact of silicate mineral structures. Chemosphere 256:127043.
  • Maćczak, P., H. Kaczmarek, and M. Ziegler-Borowska. 2020. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials 13:3951. doi:10.3390/ma13183951.
  • Mahmoud, A., P. Cézac, A. F. A. Hoadley, F. Contamine, and P. D’Hugues. 2017. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. International Biodeterioration & Biodegradation 119:118–46.
  • Marín, S., M. Cortés, M. Acosta, K. Delgado, C. Escuti, D. Ayma, and C. Demergasso. 2021. From laboratory towards industrial operation: Biomarkers for acidophilic metabolic activity in bioleaching systems. Genes 12:474. doi:10.3390/genes12040474.
  • Marlenne, G.-R., M. R.-C. Andrea, G. M.-O. Saraí, E.-G. Angélica, and G. R.-A. Norma. 2018. Effect of glucose concentration on Ni and V removal from a spent catalyst by Bacillus spp. strains isolated from mining sites. Acta Universitaria 28 (3):1–8. doi:10.15174/au.2018.1475.
  • Martín, S. F., W. Kracht, and T. Vargas. 2018. Biodepression of pyrite using Acidithiobacillus ferrooxidans in seawater. Minerals Engineering 117:127–31.
  • Martinez, P., M. Vera, and R. A. Bobadilla-Fazzini. 2015. Omics on bioleaching: current and future impacts. Applied Microbiology and Biotechnology 99:8337–50. doi:10.1007/s00253-015-6903-8.
  • Mehrabani, J. V., S. M. Mousavi, and M. Noaparast. 2011. Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidansin the flotation of high-pyrite, low-grade lead–zinc ore. Separation and Purification Technology 80:202–08.
  • Merma, A. G., C. A. C. Olivera, R. R. Hacha, M. L. Torem, and B. F. Dos Santos. 2019. Optimization of hematite and quartz BIOFLOTATION by AN artificial neural network (ANN). Journal of Materials Research and Technology 8:3076–87.
  • Merma, A. G., M. L. Torem, J. J. V. Morán, and M. B. M. Monte. 2013. On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Minerals Engineering 48:61–67.
  • Merma, A. G., R. R. Hacha, and M. L. Torem. 2017. Cellular Adaptation: Culture conditions of R. opacus and bioflotation of apatite and quartz. REM - International Engineering Journal 70 (1):67–76. doi:10.1590/0370-446720167000063.
  • Mesquita, L. M. S., F. F. Lins, and M. L. Torem. 2003. Interaction of a hydrophobic bacterium strains in a hematite–quartz flotation system. International Journal of Mineral Processing 71:31–44.
  • Miranda-Arroyave, L., M. Márquez-Godoy, and L. Ocampo-Carmona. 2019. Adaptation of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans strains on sphalerite concentrate from mining waste. Respuestas 24:72–83.
  • Mishra, S., A. Akcil, S. Panda, and A. Tuncuk. 2018b. Effect of Span-80 and ultrasonication on biodesulphurization of lignite by Rhodococcus erythropolis: Lab to semi-pilot scale tests. Minerals Engineering 119:183–90.
  • Mishra, S., A. Akcil, S. Panda, and C. Erust. 2018a. Biodesulphurization of Turkish Lignite by Leptospirillum ferriphilum: Effect of Ferrous, Span 80 and Ultrasonication. Hydrometallurgy 176:166–75.
  • Mishra, S., A. Akcil, S. Panda, and I. Agcasulu. 2018c. Laboratory and Semipilot Bioreactor Feasibility Tests for Desulphurization of Turkish Lignite using Leptospirillum ferriphilum. Energy & Fuels 32 (3):2869–77.
  • Mishra, S., S. Panda, N. Pradhan, D. Satpathy, S. K. Biswal, and B. K. Mishra. 2017. Insights into DBT biodegradation by a native Rhodococcus strain and its sulphur removal efficacy from two Indian coals and a calcined pet coke. International Biodeterioration & Biodegradation 120:124–34. doi:10.1016/j.ibiod.2017.02.007.
  • Mishra, S., S. Panda, N. Pradhan, L. B. Sukla, and B. K. Mishra. 2015. Microbe-Mineral Interactions: Exploring avenues towards development of a sustainable microbial technology for coal beneficiation. Chapter-2. In Editorial Book entitled “Environmental Microbial Biotechnology,” ed. L. B. Sukla, N. Pradhan, S. Panda, and B. K. Mishra, 33–52. Switzerland: Springer-Verlag. doi:10.1007/978-3-319-19018-1_2.
  • Mishra, V. K. 2016. Microbial Flocculants and Its Application in Wastewater Treatments: A Review. Journal of Water Pollution & Purification Research 3:1–9.
  • Moazzam, P., Y. Boroumand, P. Rabiei, S. S. Baghbaderani, P. Mokarian, F. Mohagheghian, L. J. Mohammed, and A. Razmjou. 2021. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere 277:130196.
  • Mohammed, J. N., and W. R. Z. W. Dagang. 2019. Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. Water Science &Technology 80:1807–22.
  • Morin, D. H. R. 2007. Bioleaching of Sulphide minerals in Continuous stirred tank reactors. In Microbial processing of sulphideminerals, ed. E. R. Donati and W. Sand, 133–50. https://rd.springer.com/chapter/10.1007%2F1-4020-5589-7_7.
  • Muzawazi, C., and J. Petersen. 2015. Heap and tank leaching of copper and nickel from a Platreef flotation concentrate using ammoniacal solutions. Canadian Metallurgical Quarterly 54 (3):297–304.
  • Narayanasamy, M., D. Dhanasekaran, G. Vinothini, and N. Thajuddin. 2017. Extraction and recovery of precious metals from electronic waste printed circuit boards by bioleaching acidophilic fungi. International Journal of Environmental Science and Technology 15:119–32. doi:10.1007/s13762-017-1372-5.
  • Natarajan, G., and Y. P. Ting. 2015. Gold bio-recovery from e-waste: An improved strategy through spent medium leaching with pH modification. Chemosphere 136:232–38. doi:10.1016/j.chemosphere.2015.05.046.
  • Natarajan, K. A. 1998. An integrated biotechnological approach to gold processing-An Indian experience. Mineral Processing and Extractive Metallurgy Review 19 (1):235–51.
  • Natarajan, K. A. 2018. Chapter 5 - Methods in biohydrometallurgy and developments: Dump, heap, in situ, and stirred tank bioleaching. In Biotechnology of Metals: Principles, Recovery Methods, and Environmental Concerns, pp. 81–106. https://doi.org/10.1016/B978-0-12-804022-5.00005-0.
  • Natarajan, K. A., and A. Das. 2003. Surface chemical studies on ‘Acidithiobacillus’ group of bacteria with reference to mineral flocculation. International Journal of Mineral Processing 72:189–98.
  • Nayak, A., M. S. Jena, and N. R. Mandre. 2021. Beneficiation of Lead-Zinc Ores – A Review. Mineral Processing and Extractive Metallurgy Review 1–20. doi:10.1080/08827508.2021.1903459.
  • Ndikubwimana, T., X. Zeng, N. He, Z. Xiao, Y. Xie, J.-S. Chang, L. Lin, and Y. Lu. 2015. Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochemical Engineering Journal 101:160–67.
  • Nguyen, T. D. P., T. V. A. Le, P. L. Show, T. T. Nguyen, M. H. Tran, T. N. T. Tran, and S. Y. Lee. 2019. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresource Technology 272:34–39.
  • Ni, Z.-Y., G.-H. Gu, H.-S. Yang, and G.-Z. Qiu. 2014. Bioleaching of pyrrhotite by Sulfobacillus thermosulfidooxidans. Journal of Central South University 21:2638–44.
  • Olivera, C. A. C., A. G. Merma, J. G. S. Puelles, and M. L. Torem. 2017. On the fundamentals aspects of hematite bioflotation using a Gram positive strain. Minerals Engineering 106:55–63.
  • Osorio, H., S. Mangold, Y. Denis, I. Ñancucheo, M. Esparza, D. B. Johnson, V. Bonnefoy, M. Dopson, and D. S. Holmes. 2013. Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology 79:2172–81.
  • Panda, S. 2020. Magnetic Separation of Ferrous Fractions Linked to Improved Bioleaching of Metals from Waste-To-Energy Incinerator Bottom Ash (IBA): A Green Approach. Environmental Science and Pollution Research 27:9475–89.
  • Panda, S., and A. Akcil. 2021. Securing Supplies of Technology Critical Metals: Resource Recycling and Waste Management. Waste Management 123:48–51.
  • Panda, S., A. Akcil, N. Pradhan, and H. Deveci. 2015a. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresource Technology 196:694–706.
  • Panda, S., K. Sanjay, L. B. Sukla, N. Pradhan, T. Subbaiah, B. K. Mishra, M. S. R. Prasad, and S. K. Ray. 2012. Insights into heap bioleaching of low grade chalcopyrite ores-A pilot scale study. Hydrometallurgy 125–126:157–65.
  • Panda, S., N. Pradhan, U. B. Mohapatra, S. K. Panda, S. S. Rath, D. S. Rao, B. D. Nayak, L. B. Sukla, and B. K. Mishra. 2013. Bioleaching studies for recovery of Copper values from pre and post thermally activated ball mill spillage samples. Frontiers of Environmental Science and Engineering 7:281–93.
  • Panda, S., P. C. Rout, C. K. Sarangi, S. Mishra, N. Pradhan, U. B. Mohapatra, T. Subbaiah, L. B. Sukla, and B. K. Mishra. 2014. Recovery of copper from a surface altered chalcopyrite contained ball mill spillage through bio-hydrometallurgical route. Korean Journal of Chemical Engineering 31:452–60.
  • Panda, S., R. B. Costa, S. S. Shah, S. Mishra, D. Bevilaqua, and A. Akcil. 2021a. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud) – A review. Resources, Conservation and Recycling 171:105645.
  • Panda, S., S. Mishra, and A. Akcil. 2016. Bioremediation of Acidic Mine Effluents and the Role of Sulfidogenic Biosystems: A Mini-Review. Euro-Mediterranean Journal of Environmental Integration 1:8. doi:10.1007/s41207-016-0008-3.
  • Panda, S., S. Mishra, A. Akcil, and M. A. Kucuker. 2021b. Microalgal potential for nutrient-energy-wastewater nexus: Innovations, current trends and future directions. Energy & Environment 32:604–34.
  • Panda, S., S. Mishra, D. S. Rao, N. Pradhan, U. B. Mohapatra, S. K. Angadi, and B. K. Mishra. 2015b. Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies. Korean Journal of Chemical Engineering 32:667–76.
  • Parbhakar-Fox, A. 2016. Geoenvironmental Characterisation of Heap Leach Materials at Abandoned Mines: Croydon Au-Mines, QLD, Australia. Minerals 6:52. doi:10.3390/min6020052.
  • Patra, P., and K. A. Natarajan. 2003. Microbially-induced flocculation and flotation for pyrite separation from oxide gangue minerals. Minerals Engineering 16:965–73.
  • Petersen, J., and D. G. Dixon. 2007. Modelling zinc heap bioleaching. Hydrometallurgy 85:127–43.
  • Poorni, S., and K. A. Natarajan. 2013. Microbially induced selective flocculation of hematite from kaolinite. International Journal of Mineral Processing 125:92–100.
  • Poorni, S., and K. A. Natarajan. 2014. Flocculation behaviour of hematite–kaolinite suspensions in presence of extracellular bacterial proteins and polysaccharides. Colloids and surfaces. B, Biointerfaces 114:186–92.
  • Pradhan, D., S. Panda, and L. B. Sukla. 2018. Recent advances in indium metallurgy: A review. Mineral Processing and Extractive Metallurgy Review 39 (3):167–80.
  • Pradhan, N., K. C. Nathsarma, K. S. Rao, L. B. Sukla, and B. K. Mishra. 2008. Heap Bioleaching of chalcopyrite: A review. Minerals Engineering 21:355–65.
  • Prakasan, S. M. R., and K. A. Natarajan. 2010. Microbially induced separation of quartz from hematite using sulfate reducing bacteria. Colloids and surfaces. B, Biointerfaces 78:163–70.
  • Qu, Y., B. Lian, B. Mo, and C. Liu. 2013. Bioleaching of heavy metals from red mud using Aspergillus Niger. Hydrometallurgy 136:71–77.
  • Quatrini, R., E. Jedlicki, and D. S. Holmes. 2005. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. Journal of industrial microbiology & biotechnology 32:606–14.
  • Ramanathan, T., and Y.-P. Ting. 2016. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles. Chemosphere 160:54–61.
  • Ramos-Escobedo, G. T., E. T. Pecina-Treviño, A. B. Tokunaga, S. I. Concha-Guerrero, D. Ramos-Lico, R. Guerra-Balderrama, and E. Orrantia-Borunda. 2016. Bio-collector alternative for the recovery of organic matter in flotation processes. Fuel 176:165–72.
  • Rao, K. H., A. Vilinska, and I. V. Chernyshova. 2010. Minerals bioprocessing: R & D needs in mineral biobeneficiation. Hydrometallurgy 104:465–70.
  • Rao, K. H., and S. Subramanian. 2007. Bioflotation and bioflocculation of relevance to minerals bioprocessing. In Microbial processing of metal sulphides, ed. E. Donati and W. Sand, 267–86. Germany: Springer Verlag.
  • Rezza, I., E. Salinas, M. Elorza, M. Sanz de Tosetti, and E. Donati. 2001. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochemistry 36:495–500.
  • Richter, C., H. Kalka, and H. Märten. 2017. Potential Bioleaching Effects in In Situ Recovery Applications. Solid State Phenomena 262:456–60.
  • Rohwerder, T., T. Gehrke, K. Kinzler, and W. Sand. 2003. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology 63:239–48.
  • Sadeghizadeh, M., M. R. Hosseini, and A. Ahmadi. 2017. Bioflocculation of Hematite and Goethite Using Bacillus licheniformis (Bio-flocculation of Hematite and Goethite). Mineral Processing and Extractive Metallurgy Review 38:151–61.
  • Sajjad, W., G. Zheng, G. Din, X. Ma, M. Rafiq, and W. Xu. 2019. Metals Extraction from Sulfide Ores with Microorganisms: The Bioleaching Technology and Recent Developments. Transactions of the Indian Institute of Metals 72:559–79.
  • Sand, W., T. Gehrke, P. G. Jozsa, and A. Schippers. 2001. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59:159–75.
  • Sandstrom, A., J. E. Sundkvist, and S. Peterson 1997. Bio-oxidation of a complex zinc sulfide ore: a studyperformed in continuous bench and pilot scale. In Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97. Sydney, Glenside, Australia: Australian Mineral Foundation Inc. M1.1.1-M1.1.11. August 4–6.
  • Santhiya, D., S. Subramanan, and K. A. Natarajan. 2001b. Surface chemical studies on sphalerite and galena using Bacillus polymyxa, Part II: Mechanisms of microbe-mineral interaction. Journal of colloid and interface science 235:298–309.
  • Santhiya, D., S. Subramanan, and K. A. Natarajan. 2002. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. Journal of colloid and interface science 256:237–48.
  • Santhiya, D., S. Subramanian, and K. A. Natarajan. 2000. Surface chemical studies on galena and sphalerite in the presence of thiobacillus thiooxidans with reference to mineral beneficiation. Minerals Engineering 13:747–63.
  • Santhiya, D., S. Subramanian, and K. A. Natarajan. 2001a. Surface chemical studies on sphalerite and galena using Bacillus polymyxa, Part I: Microbially induced mineral separation. Journal of colloid and interface science 235:289–97.
  • Sanwani, E., S. K. Chaerun, R. Z. Mirahati, and T. Wahyuningsih. 2016. 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP), 4-6 August 2015 Bioflotation: Bacteria-Mineral Interaction for Eco-friendly and Sustainable Mineral Processing. Procedia Chemistry 19:666–72.
  • Sarvamangala, H., and K. A. Natarajan. 2011. Microbially induced flotation of alumina, silica/calcite from haematite. International Journal of Mineral Processing 99:70–77.
  • Schippers, A. 2007. Microorganims involved in bioleaching and nucleic-acid based molecular methods for their identification and quantification. In Microbial Processing of Metal Sulfides, ed. E. R. Donati, and W. Sand, 3–33. Dordrecht, Netherlands: Springer.
  • Schippers, A., S. Hedrich, J. Vasters, M. Drobe, W. Sand, and S. Willscher. 2014. Biomining: metal recovery from ores with microorganisms. Advances in Biochemical Engineering/Biotechnology 141:1–47.
  • Segura-Salazar, J., and P. R. Brito-Parada. 2021. Stibnite froth flotation: A critical review. Minerals Engineering 163:106713.
  • Selim, K. A., and M. Rostom. 2018. Bioflocculation of (Iron oxide – Silica) system using Bacillus cereus bacteria isolated from Egyptian iron ore surface. Egyptian Journal of Petroleum 27:235–40.
  • Selvi, A., and R. Aruliah. 2018. A statistical approach of zinc remediation using acidophilic bacterium via an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology. Chemosphere 207:753–63.
  • Sharma, P. K. 2001. Surface Studies Relevant to Microbial Adhesion and Bioflotation of Sulphide Minerals, 37. Division of Mineral Processing Luleå University of Technology SE-97187, Luleå Sweden November.
  • Shiers, D. W., D. M. Collinson, and H. R. Watling. 2016. Life in heaps: a review of microbial responses to variable acidity in sulphide mineral bioleaching heaps for metal extraction. Research in Microbiology 167:576–86.
  • Silva, A. C., D. V. C. Cara, E. M. S. Silva, G. S. Leal, A. M. Machado, and L. M. Da Silva. 2018. Apatite bioflotation using spent yeast (saccharomyces cerevisiae) cells as collector. Tecnologia em Metalurgia Materiais e Mineração 15 (4):475–80.
  • Simate, G. S., S. Ndlovu, and L. F. Walubita. 2010. The fungal and chemolithotrophic leaching of nickel laterites-Challenges and opportunities. Hydrometallurgy 103:150–57.
  • Smith, R. W., and M. Misra. 1993. Recent developments in the bioprocessing of minerals. Mineral Processing and Extractive Metallurgy Review 12 (1):37–60.
  • Spooren, J., K. Binnemans, J. Björkmalm, K. Breemersch, Y. Dams, K. Folens, M. González-Moya, L. Horckmans, K. Komnitsas, W. Kurylak, et al. 2020. Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resources, Conservation & Recycling 160:104919.
  • Srichandan, H., R. K. Mohapatra, P. K. Parhi, and S. Mishra. 2019. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 189:105122.
  • Staden, P. J. V., and J. Petersen. 2021. Towards fundamentally based heap leaching scale-up. Minerals Engineering 168:106915.
  • Štyriakova, I., and I. Štyriak. 2000. Iron Removal From Kaolins by Bacterial Leaching. Ceramics Silikaty 44 (4):135–41.
  • Štyriaková, I., I. Štyriak, M. P. Nandakumar, and B. Mattiasson. 2003. Bacterial destruction of mica during bioleaching of kaolin and quartz sands by Bacillus cereus. World journal of microbiology & biotechnology 19:583–90.
  • Sukhanova, E. V., Shtykova Y. R., Suslova M. Y., et al. 2019. Diversity and Physiological and Biochemical Properties of Heterotrophic Bacteria Isolated from Lake Baikal Epilithic Biofilms. Microbiology 88, 324–334. https://doi.org/10.1134/S0026261719030147.
  • Sukla, L. B., J. Esther, S. Panda, and N. Pradhan. 2014. Biomineral Processing: A Valid Eco-Friendly Alternative for Metal Extraction. RRJMB 3:1–10.
  • Sukla, L. B., N. Pradhan, S. Panda, and B. K. Mishra, 2015. Environmental Microbial Biotechnology. Springer. https://rd.springer.com/book/10.1007%2F978-3-319-19018-1.
  • Takahashi, N., J. Washio, and G. Mayanagi. 2012. Metabolomic approach to oral biofilm characterization—a future direction of biofilm research. Journal of Oral Biosciences 54 (3):138–43. doi:10.1016/j.job.2012.02.005.
  • Tao, H., and L. Dongwei. 2014. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy – a presentation. Biotechnology Reports 4:107–19.
  • Teng, Q., Q. Wen, Z. Yang, and S. Liu. 2021. Evaluation of the biological flotation reagent obtained from Paenibacillus amylolyticus in magnetite and phlogopite flotation system. Colloids and surfaces. A, Physicochemical and engineering aspects 610:125930.
  • Thenepalli, T., R. Chilakala, L. Habte, L. Q. Tuan, and C. S. Kim. 2019. A Brief Note on the Heap Leaching Technologies for the Recovery of Valuable Metals. Sustainability 11:3347.
  • Tributsch, H. 2001. Direct versus indirect bioleaching. Hydrometallurgy 59:177–85. doi:10.1016/S0304-386X(00)00,181-X.
  • Tzvetkova, T., S. Selenska-Pobell, and V. Groudeva. 2002. Recovery and Characterization of Leptospirillum Ferrooxidans/Leptospirillum Ferriphilum and Acidithiobacillus Ferrooxidans Natural Isolates from Uranium Mining Waste Piles. Biotechnology & Biotechnological Equipment 16:111–17.
  • United Nations, Department of Economic and Social Affairs, Population Division. 2019.World Population Prospects 2019, Online Edition. Rev.1. Accessed May 5, 2021. https://population.un.org/wpp/Download/Standard/Population/.
  • Uroz, S., C. Calvaruso, M. P. Turpault, and P. Fley-Klett. 2009. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology 17:378–87.
  • Valdes, J., I. Pedroso, R. Quatrini, R. J. Dodson, H. Tettelin, I. I. R. Blake, J. A. Eisen, and D. S. Holmes. 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:597–620.
  • Valdes, J., J. P. Cárdenas, R. Quatrini, M. Esparza, H. Osorio, F. Duarte, C. Lefimil, R. Sepulveda, E. Jedlicki, and D. S. Holmes. 2010. Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydrometallurgy 104:471–76.
  • Vargas, T., H. Estay, E. Arancibia, and S. Díaz-Quezada. 2020. In situ recovery of copper sulfde ores: Alternative process schemes for bioleaching application. Hydrometallurgy 196:105442.
  • Vasanthakumar, B., H. Ravishankar, and S. Subramanian. 2012. A Novel Property of DNA–As a Bioflotation Reagent in Mineral Processing. PLoS ONE 7 (7):e39316. doi:10.1371/journal.pone.0039316.
  • Vasanthakumar, B., H. Ravishankar, and S. Subramanian. 2013. Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium. Colloids and surfaces. B, Biointerfaces 112:279–86.
  • Vasanthakumar, B., H. Ravishankar, and S. Subramanian. 2017. Selective bio-flotation of sphalerite from galena using mineral – adapted strains of Bacillus subtilis. Minerals Engineering 110:179–84.
  • Vera, M., A. Schippers, and W. Sand. 2013. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Applied Microbiology and Biotechnology 97:7529–41.
  • Vijayalakshmi, S. P., and A. M. Raichur. 2002. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. International Journal of Mineral Processing 67:199–210.
  • Vilinska, A., and K. H. Rao. 2008. Leptospirillum ferrooxidans–sulfide mineral interactions with reference to bioflotation and bioflocculation. Transactions of Nonferrous Metals Society of China 18:1403–09.
  • Villares, M., A. Isıldar, A. M. Beltran, and J. Guinee. 2016. Applying an ex-ante life cycle perspective to metal recovery frome-waste using bioleaching. Journal of Cleaner Production 129:315–28.
  • Vyas, S., and Y.-P. Ting. 2019. Effect of ultrasound on bioleaching of hydrodesulphurization spent catalyst. Environmental Technology & Innovation 14:100310.
  • Vyas, S., and Y.-P. Ting. 2020. Microbial leaching of heavy metals using Escherichia coli and evaluation of bioleaching mechanism. Bioresource Technology Reports 9:100368.
  • Waghmode, M. S., A. B. Gunjal, and N. N. Patil. 2021. Bioleaching of electronic waste. Pollution 7:141–52.
  • Wambeke, F. V., S. Bonnet, T. Moutin, P. Raimbault, G. Alarcon, and C. Guieu. 2008. Factors limiting heterotrophic bacterial production in the southern Pacific Ocean. Biogeosciences 5:833–45.
  • Wang, Y. G., L. J. Su, L. J. Zhang, W. M. Zeng, J. Z. Wu, L. L. Wan, G. Z. Qiu, X. H. Chen, and H. B. Zhou. 2012. Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium. Bioresource Technology 121:348–54.
  • Watling, H. R. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review. Hydrometallurgy 84:81–108.
  • Watling, H. R. 2015. Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources. Minerals 5:1–60.
  • Wen, B., W. Xia, and J. M. Sokolovic. 2017. Recent advances in effective collectors for enhancing the flotation of lowrank/oxidized coals. Powder Technology 319. doi:10.1016/j.powtec.2017.06.030.
  • Xu, R., Q. Li, F. Meng, Y. Yang, B. Xu, H. Yin, and T. Jiang. 2020. Bio-Oxidation of a Double Refractory Gold Ore and Investigation of Preg-Robbing of Gold from Thiourea Solution. Metals 10:1216. doi:10.3390/met10091216.
  • Xu, T.-J., T. Ramanathan, and Y.-P. Ting. 2014. Bioleaching of incineration fly ash by Aspergillus Niger–precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnology Reports 3:8–14.
  • Yang, H. F., T. Li, Y. H. Chang, H. L. Luo, and Q. Y. Tang. 2014b. Possibility of using strain F9 (Serratia marcescens) as a bio-collector for hematite flotation. International Journal of Minerals, Metallurgy and Materials 21:210.
  • Yang, H., S. Feng, Y. Xin, and W. Wang. 2014c. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp. Bioresource Technology 154:185–91.
  • Yang, H., T. Li, Q. Tang, C. Wang, and W. Ma. 2013. Development of a bio-based collector by isolating a bacterial strain using flotation and culturing techniques. International Journal of Mineral Processing 123:145–51.
  • Yang, Z. C., Y. L. Feng, H. R. Li, W. D. Wang, and Q. Teng. 2014a. Effect of biological pretreatment on flotation recovery of pyrolusite. Transactions of Nonferrous Metals Society of China 24:1571–77.
  • Ye, J., P. Zhang, G. Zhang, S. Wang, M. Nabi, Q. Zhang, and H. Zhang. 2018. Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms. Journal of Cleaner Production 197:562–70.
  • Yee, N., J. B. Fein, and C. J. Daughney. 2000. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochimica et Cosmochimica Acta 64:609–17.
  • Yehia, A., S. Abd El-Halim, H. Sharada, M. Fadel, and M. Ammar. 2021. Application of a fungal cellulase as a green depressant of hematite in the reverse anionic flotation of a high-phosphorus iron ore. Minerals Engineering 167:106903.
  • Zhan, S., J. Liu, Y. Chen, and D. Sun. 2013. Single and Coorperative Bauxite Bioleaching by Silicate Bacteria. IERI Procedia 5:172–77.
  • Zhang, B., and R. Powers. 2012. Analysis of bacterial biofilms using NMR based metabolomics. Future Medicinal Chemistry 4:1273–306.
  • Zhang, L.-M., J.-H. Peng, -M.-M. Wei, J.-N. Ding, and H.-B. Zhou. 2010. Bioleaching of chalcopyrite with Acidianus manzaensis YN25 under contact and non-contact conditions. Transactions of Nonferrous Metals Society of China 20:1981–86.
  • Zhang, R., X. Ma, X. Shen, Y. Zhai, T. Zhang, C. Ji, and J. Hong. 2020. Life cycle assessment of electrolytic manganese metal production. Journal of Cleaner Production 253:119951.
  • Zhang, X.-Q., and Y.-S. Li. 2017. Changes in shale oil composition and yield after bioleaching by bacillus mucilaginosus and Thiobacillus ferrooxidans. Oil Shale 34:146–54. doi:10.3176/oil.2017.2.04.
  • Zhang, Y., C. Wang, B. Ma, X. Jie, and P. Xing. 2019. Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis. Hydrometallurgy 186:284–91.
  • Zhao, J., W. Wu, X. Zhang, M. Zhu, and W. Tan. 2017. Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals. International Journal of Mineral Processing 168:40–47.
  • Zheng, X., P. J. Arps, and R. W. Smith. 2001. Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. International Journal of Mineral Processing 62:159–72.
  • Zouboulis, A. I., K. A. Matis, and I. C. Hancock. 1997. Biosorption of metals from dilute aqueous solutions. Separation and Purification Methods 26 (2):255–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.