211
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Specifically Adsorbed Ions in the Reverse Cationic Flotation of Iron Ore

, , &

References

  • Day, R. A., and A. L. Underwood. 1991. Quantitative analysis. In Determination of iron with 1,10-Phenanthroline, 6th ed., 645–46. Englewood Cliffs, NJ: Prentice Hall.
  • Delgado, A. V., F. González-Caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema. 2007. Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science 309 (2):194–224. doi:10.1016/j.jcis.2006.12.075.
  • Duarte, G. M. P., and R. M. F. Lima. 2021. Quartz and hematite activation by Zn, Ca and Mg ions in the cationic flotation route for oxidized zinc ore. Mineral Processing and Extractive Metallurgy Review 1–8. doi:10.1080/08827508.2021.1931175.
  • Fuerstenau, M. C., and B. R. Palmer. 1976. Anionic flotation of oxides and silicates. In Society of mining engineers of AIME, mineral processing division, ed. A. M. Gaudin and M. C. Fuerstenau, 148–96. New York, NY, USA: American Institute of Mining, Metallurgical, and Petroleum Engineers.
  • Green, R. E., and A. F. Colombo. 1984. Dispersion-selective flocculation-desliming characteristics of oxidized taconites. Bureau of Mines, United States Department of Interior.
  • Haselhuhn, H. J., and S. K. Kawatra. 2015. Effects of water chemistry on hematite selective flocculation and dispersion. Mineral Processing and Extractive Metallurgy Review 36 (5):305–09. doi:10.1080/08827508.2014.978318.
  • Kawatra, S. K. 2009. Froth flotation – fundamental principles. In SME mining engineering handbook, Vol. 2, 3rd ed., 30. Englewood, CO: Society for Mining, Metallurgy and Exploration. Inc.
  • Krawczyk, D., and N. Gonglewski. 1959. Determining suspended solids using a spectrophotometer. Sewage and Industrial Wastes 31 (10):1159–64.
  • Laskowski, J. S., and S. Castro. 2012. Hydrolyzing ions in flotation circuits: Seawater flotation. In Proceedings of the 13th International Mineral Processing Symposium, Bodrum (Turkey), 219–28.
  • Leja, J., and S. R. Rao. 2004. Surface chemistry of froth flotation. In Plenum Press, Vol. 1, 2nd ed., 211–17. New York, (NY): Springer Science+Business Media New York.
  • Lelis, D. F., D. G. da Cruz, and R. M. F. Lima. 2019. Effects of calcium and chloride ions in iron ore reverse cationic flotation: Fundamental studies. Mineral Processing and Extractive Metallurgy Review 40 (6):402–09. doi:10.1080/08827508.2019.1666122.
  • Lelis, D. F., R. M. F. Lima, G. M. Rocha, and V. A. Leão. 2020. Effect of magnesium species on cationic flotation of quartz from hematite. Mineral Processing and Extractive Metallurgy Review 1–7. doi:10.1080/08827508.2020.1864362.
  • Li, W., Y. Li, Z. Wei, Q. Xiao, and S. Song. 2018. Fundamental studies of SHMP in reducing negative effects of divalent ions on molybdenite flotation. Minerals 8 (9):404. doi:10.3390/min8090404.
  • Liu, W., C. J. Moran, and S. Vink. 2013. A review of the effect of water quality on flotation. Minerals Engineering 54:91–100. doi:10.1016/j.mineng.2013.07.011.
  • Lynch, A. J., N. W. Johnson, E. V. Manlapig, and C. G. Thorne. 1981. Mineral and coal flotation circuits: Their simulation and control. Amsterdam: Elsevier.
  • Matos, V. E. D., S. D. C. S. Nogueira, P. B. Kowalczuk, G. R. D. Silva, and A. E. C. Peres. 2021. Differences in etheramines froth properties and the effects on iron ore flotation. Part I: Two-phase systems. Mineral Processing and Extractive Metallurgy Review 1–8. doi:10.1080/08827508.2021.1875461.
  • Nakhaei, F., and M. Irannajad. 2018. Reagent types in flotation of iron oxide minerals: A review. Mineral Processing and Extractive Metallurgy Review 39 (2):89–124. doi:10.1080/08827508.2017.1391245.
  • Nykänen, V. P. S., A. S. Braga, T. C. S. Pinto, P. H. L. S. Matai, N. P. Lima, L. S. L. Filho, and M. B. M. Monte. 2020. True flotation versus entrainment in reverse cationic flotation for the concentration of iron ore at industrial scale. Mineral Processing and Extractive Metallurgy Review 41 (1):11–21. doi:10.1080/08827508.2018.1514298.
  • Pyykkö, P., and M. Atsumi. 2009. Molecular single-bond covalent radii for elements 1–118. Chemistry – A European Journal 15 (1):186–97. doi:10.1002/chem.200800987.
  • Rao, S. R. 2004. Electrical characteristics at interfaces. In Surface chemistry of froth flotation, 2nd ed., 209–56. New York, NY, USA: Kluwer Academic/Plenum Publishers.
  • Rath, S. S., and H. Sahoo. 2020. A review on the application of starch as depressant in iron ore flotation. Mineral Processing and Extractive Metallurgy Review 1–14. doi:10.1080/08827508.2020.1843028.
  • Ren, L., H. Qiu, Y. Zhang, A. Nguyen, M. Zhang, P. Wei, and Q. Long. 2018. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal. Powder Technology 338:180–89. doi:10.1016/j.powtec.2018.07.026.
  • Shortridge, P. G., P. J. Harris, and D. J. Bradshaw, 1999. The influence of ions on the effectiveness of polysaccharide depressants in the flotation of talc. In Proceedings of the 3rd UBC-McGill Bi-Annual International Symposium on Fundamentals of Mineral Processing, Canadian Institute of Mining, Metallurgy and Petroleum, Quebec City, QC, Canada, 155–69.
  • Smith, P. G., and L. J. Warren. 1989. Entrainment of particles into flotation froths. Mineral Processing and Extractive Metallurgy Review 5 (1–4):12345. doi:10.1080/08827508908952647.
  • Tang, M., and S. Wen. 2019. Effects of cations/anions in recycled tailing water on cationic reverse flotation of iron oxides. Minerals 9 (3):161. doi:10.3390/min9030161.
  • Tang, M., S. Wen, and D. Liu. 2016. Effects of heating- or caustic-digested starch on its flocculation on hematite. Mineral Processing and Extractive Metallurgy Review 37 (1):49–57. doi:10.1080/08827508.2015.1115986.
  • Yang, S., C. Li, and L. Wang. 2017. Dissolution of starch and its role in the flotation separation of quartz from hematite. Powder Technology 320:346–57. doi:10.1016/j.powtec.2017.07.061.
  • Zhang, X., X. Gu, Y. Han, N. Parra-Álvarez, V. Claremboux, and S. K. Kawatra. 2021. Flotation of iron ores: A Review. Mineral Processing and Extractive Metallurgy Review 42 (3):184–212. doi:10.1080/08827508.2019.1689494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.