1,583
Views
5
CrossRef citations to date
0
Altmetric
Review

Characteristics of Spent Lithium Ion Batteries and Their Recycling Potential Using Flotation Separation: A Review

&

References

  • Al-Shammari, H., and S. Farhad. 2021. Heavy liquids for rapid separation of cathode and anode active materials from recycled lithium-ion batteries. Resources, Conservation and Recycling 174:105749.
  • Al-Thyabat, S., T. Nakamura, E. Shibata, and A. Iizuka. 2013. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review. Minerals Engineering 45:4–17.
  • Amaraweera, T., N. Balasooriya, H. Wijayasinghe, A. Attanayake, and M. Dissanayake. 2013. “Purity Enhancement of Sri Lankan Vein Graphite for Lithium-Ion Rechargeable Battery Anode.“ Proceedings to 29th Technical Sessions of Geological Society of Sri Lanka 101: 104.
  • An, S. J., J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III. 2016. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76.
  • Aravindan, V., S. Jayaraman, F. Tedjar, and S. Madhavi. 2019. From electrodes to electrodes: Building high-performance Li-ion capacitors and batteries from spent lithium-ion battery carbonaceous materials. ChemElectroChem 6 (5):1407–12.
  • Arbiter, N., Fuji, Y., Hansen, B., and Raja, A., 1975. Surface Properties of Hydrophobic Solids. In Recent Advances in Interfacial Phenomena of Particulate/Solution/Gas Systems; Applications to Flotation Research. (P. Somasundaran and R. B. Grieves: Editors) AIChE Symposium Series, No. 150(71), 176–82.
  • Arkema. n.d. “PVDF Electrode Binders.“ Accessed 11 September 2021. https://www.extremematerials-arkema.com/en/markets-and-applications/renewable-energy/lithium-ion-battery/electrode-binders/.
  • Arshad, F., L. Li, K. Amin, E. Fan, N. Manurkar, A. Ahmad, J. Yang, F. Wu, and R. Chen. 2020. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries. ACS Sustainable Chemistry & Engineering 8 (36):13527–54.
  • Aurbach, D., Y. Ein‐Eli, O. Chusid, Y. Carmeli, M. Babai, and H. Yamin. 1994. The correlation between the surface chemistry and the performance of Li‐carbon intercalation anodes for rechargeable ‘Rocking‐Chair’type batteries. Journal of the Electrochemical Society 141 (3):603.
  • Bahgat, M., F. E. Farghaly, S. M. A. Basir, and O. A. Fouad. 2007. Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries. Journal of Materials Processing Technology 183 (1):117–21.
  • Balasooriya, N. W. B., P. Touzain, and P. W. S. K. Bandaranayake. 2007. Capacity improvement of mechanically and chemically treated Sri Lanka natural graphite as an anode material in Li-ion batteries. Ionics 13 (5):305–09.
  • Bernardes, A. M., D. C. R. Espinosa, and J. A. S. Tenório. 2004. Recycling of batteries: A review of current processes and technologies. Journal of Power Sources 130 (1–2):291–98.
  • Bi, H., H. Zhu, L. Zu, Y. Bai, S. Gao, and Y. Gao. 2019. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries. Waste Management 100:1–9.
  • Cao, N., Y. Zhang, L. Chen, W. Chu, Y. Huang, Y. Jia, and M. Wang. 2021. An innovative approach to recover anode from spent lithium-ion battery. Journal of Power Sources 483:229163.
  • Castillo, S., F. Ansart, C. Laberty-Robert, and J. Portal. 2002. Advances in the recovering of spent lithium battery compounds. Journal of Power Sources 112 (1):247–54.
  • Chan, K. H., J. Anawati, M. Malik, and G. Azimi. 2021. Closed-loop recycling of lithium, cobalt, nickel, and manganese from waste lithium-ion batteries of electric vehicles. ACS Sustainable Chemistry & Engineering 9 (12):4398–410.
  • Chehreh Chelgani, S., M. Rudolph, R. Kratzsch, D. Sandmann, and J. Gutzmer. 2015. A review of graphite beneficiation techniques. Mineral Processing and Extractive Metallurgy Review 37 (1):58–68.
  • Chen, J., Q. Li, J. Song, D. Song, L. Zhang, and X. Shi. 2016. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries. Green Chemistry 18 (8):2500–06.
  • Chen, M., Z. Zheng, Q. Wang, Y. Zhang, X. Ma, C. Shen, D. Xu, J. Liu, Y. Liu, and P. Gionet. 2019. Closed loop recycling of electric vehicle batteries to enable ultra-high quality cathode powder. Scientific Reports 9 (1):1–9.
  • Chen, X., Y. Zhu, W. Peng, Y. Li, G. Zhang, F. Zhang, and X. Fan. 2017. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation. Journal of Materials Chemistry A 5 (12):5880–85.
  • Claus, D. 2011. Materials and Processing for Lithium-ion Batteries. TMS 60 (9):43–48.
  • Contestabile, M., S. Panero, and B. Scrosati. 2001. A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources 92 (1–2):65–69.
  • Crundwell, F., N. Du Preez, and B. Knights. 2020. Production of cobalt from copper-cobalt ores on the African Copperbelt–An overview. Minerals Engineering 156:106450.
  • Crundwell, F., M. Moats, V. Ramachandran, T. Robinson, and W. G. Davenport. 2011. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals. London, UK: Elsevier.
  • da Costa, A. J., J. F. Matos, A. M. Bernardes, and I. L. Müller. 2015. Beneficiation of cobalt, copper and aluminum from wasted lithium-ion batteries by mechanical processing. International Journal of Mineral Processing 145:77–82.
  • Dai, Q., J. Spangenberger, S. Ahmed, L. Gaines, J. C. Kelly, and M. Wang. 2019. Everbatt: A closed-loop battery recycling cost and environmental impacts model. Argonne, IL (United States): Argonne National Lab.(ANL).
  • DeMeuse, M. 2020. Battery separators: How can the plastics industry meet the challenges? August 18, 2020. https://omnexus.specialchem.com/tech-library/article/battery-separators-how-can-the-plastics-industry-meet-current-challenges.
  • Dey, A., and B. Sullivan. 1970. The electrochemical decomposition of propylene carbonate on graphite. Journal of the Electrochemical Society 117 (2):222.
  • Diaz, F., B. Flerus, S. Nagraj, K. Bokelmann, R. Stauber, and B. Friedrich. 2018a. Comparative analysis about degradation mechanisms of printed circuit boards (PCBs) in slow and fast pyrolysis: The influence of heating speed. Journal of Sustainable Metallurgy 4 (2):205–21.
  • Diaz, F., Y. Wang, T. Moorthy, and B. Friedrich. 2018b. Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis. Metals 8 (8):565.
  • Diekmann, J., C. Hanisch, L. Froböse, G. Schälicke, T. Loellhoeffel, A.-S. Fölster, and A. Kwade. 2016. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. Journal of the Electrochemical Society 164 (1):A6184.
  • Dorella, G., and M. B. Mansur. 2007. A study of the separation of cobalt from spent Li-ion battery residues. Journal of Power Sources 170 (1):210–15.
  • Duarte Castro, F., M. Vaccari, and L. Cutaia. 2021. “Valorization of Resources from End-of-life Lithium-ion Batteries: A Review.“ Critical Reviews in Environmental Science and Technology 51 (1): 1–44.
  • Endo, K., H. P. Zhang, L. J. Fu, K. J. Lee, K. Sekine, T. Takamura, Y. U. Jeong, Y. P. Wu, R. Holze, and H. Q. Wu. 2006. Electrochemical performance of a novel surface modified spherical graphite as anode material for lithium ion batteries. Journal of Applied Electrochemistry 36 (11):1307–10.
  • Espinosa, D. C. R., A. M. Bernardes, and J. A. S. Tenório. 2004. An overview on the current processes for the recycling of batteries. Journal of Power Sources 135 (1–2):311–19.
  • Fan, C.-L., H. He, K.-H. Zhang, and S.-C. Han. 2012. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity. Electrochimica Acta 75:311–15.
  • Feng, X., M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He. 2018. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials 10:246–67.
  • Ferreira, D. A., L. M. Z. Prados, D. Majuste, and M. B. Mansur. 2009. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources 187 (1):238–46.
  • Forrest, W., G. Adel, and R.-H. Yoon. 1994. Characterizing coal flotation performance using release analysis. Coal Preparation 14 (1–2):13–27.
  • Freitas, M. B. J. G., and E. M. Garcia. 2007. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. Journal of Power Sources 171 (2):953–59.
  • Fu, L. J., H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu. 2006. Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences 8 (2):113–28.
  • Gaines, L., and R. Cuenca. 2000. Costs of lithium-ion batteries for vehicles. IL (US): Argonne National Lab.
  • Gaines, L., Q. Dai, J. T. Vaughey, and S. Gillard. 2021. Direct Recycling R&D at the ReCell Center. Recycling 6 (2):31.
  • Gallego, N. C., C. I. Contescu, H. M. Meyer, J. Y. Howe, R. A. Meisner, E. A. Payzant, M. J. Lance, S. Y. Yoon, M. Denlinger, and D. L. Wood. 2014. Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries. Carbon 72:393–401.
  • Ganter, M. J., B. J. Landi, C. W. Babbitt, A. Anctil, and G. Gaustad. 2014. Cathode refunctionalization as a lithium ion battery recycling alternative. Journal of Power Sources 256:274–80.
  • Gao, Y., Y. Li, J. Li, H. Xie, and Y. Chen. 2020b. Direct recovery of LiCoO2 from the recycled lithium-ion batteries via structure restoration. Journal of Alloys and Compounds 845:156234.
  • Gao, Y., C. Wang, J. Zhang, Q. Jing, B. Ma, Y. Chen, and W. Zhang. 2020c. Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination. ACS Sustainable Chemistry & Engineering 8 (25):9447–55.
  • Gao, H., Q. Yan, P. Xu, H. Liu, M. Li, P. Liu, J. Luo, and Z. Chen. 2020a. Efficient Direct Recycling of Degraded LiMn2O4 Cathodes by One-Step Hydrothermal Relithiation. ACS Applied Materials & Interfaces 12 (46):51546–54.
  • Georgi-Maschler, T., B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz. 2012. Development of a recycling process for Li-ion batteries. Journal of Power Sources 207:173–82.
  • Gharai, M., and R. Venugopal. 2016. Modeling of flotation process—an overview of different approaches. Mineral Processing and Extractive Metallurgy Review 37 (2):120–33.
  • Gratz, E., Q. Sa, D. Apelian, and Y. Wang. 2014. A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources 262:255–62.
  • Gu, F., J. Guo, X. Yao, P. A. Summers, S. D. Widijatmoko, and P. Hall. 2017. An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. Journal of Cleaner Production 161:765–80.
  • Guan, J., Y. Li, Y. Guo, R. Su, G. Gao, H. Song, H. Yuan, B. Liang, and Z. Guo. 2017. Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries. ACS Sustainable Chemistry & Engineering 5 (1):1026–32.
  • Guerin, K., A. Fevrier‐Bouvier, S. Flandrois, M. Couzi, B. Simon, and P. Biensan. 1999. Effect of graphite crystal structure on lithium electrochemical intercalation. Journal of the Electrochemical Society 146 (10):3660.
  • Guo, Y., F. Li, H. Zhu, G. Li, J. Huang, and W. He. 2016. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management 51:227–33.
  • Guo, P., H. Song, and X. Chen. 2009. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications 11 (6):1320–24.
  • Hanisch, C., T. Loellhoeffel, J. Diekmann, K. J. Markley, W. Haselrieder, and A. Kwade. 2015. Recycling of lithium-ion batteries: A novel method to separate coating and foil of electrodes. Journal of Cleaner Production 108:301–11.
  • Harper, G., R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, and S. Lambert. 2019. Recycling lithium-ion batteries from electric vehicles. Nature 575 (7781):75–86.
  • He, L.-P., S.-Y. Sun, -Y.-Y. Mu, X.-F. Song, and J.-G. Yu. 2017a. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant. ACS Sustainable Chemistry & Engineering 5 (1):714–21.
  • He, Y., X. Yuan, G. Zhang, H. Wang, T. Zhang, W. Xie, and L. Li. 2020. “A Critical Review of Current Technologies for the Liberation of Electrode Materials from Foils in the Recycling Process of Spent Lithium-ion Batteries.“ Science of the Total Environment 766: 142382.
  • He, K., Z.-Y. Zhang, L. Alai, and F.-S. Zhang. 2019. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries. Journal of Hazardous Materials 375:43–51.
  • He, Y., T. Zhang, F. Wang, G. Zhang, W. Zhang, and J. Wang. 2017b. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. Journal of Cleaner Production 143:319–25.
  • He, K., Z.-Y. Zhang, and F.-S. Zhang. 2021. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery. Waste Management 124:283–92.
  • Heiskanen, S. K., J. Kim, and B. L. Lucht. 2019. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3 (10):2322–33.
  • High-Performance Anode Materials for Lithium-ion Battery Manufacturing. n.d. Accessed 3 December 2020. https://www.targray.com/li-ion-battery/anodematerials
  • Hu, J., J. Zhang, H. Li, Y. Chen, and C. Wang. 2017. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources 351:192–99.
  • Huang, Y., G. Han, J. Liu, W. Chai, W. Wang, S. Yang, and S. Su. 2016. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. Journal of Power Sources 325:555–64.
  • Jara, A. D., A. Betemariam, G. Woldetinsae, and J. Y. Kim. 2019. Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology 29 (5):671–89.
  • Jung, J. C.-Y., P.-C. Sui, and J. Zhang. 2021. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. Journal of Energy Storage 35:102217.
  • Kader, Z. A., A. Marshall, and J. Kennedy. 2021. “A Review on Sustainable Recycling Technologies for Lithium-ion Batteries.“ Emergent Materials 4: 725–735.
  • Kang, D. H. P., M. Chen, and O. A. Ogunseitan. 2013. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environmental Science & Technology 47 (10):5495–503.
  • Kaskhedikar, N. A., and J. Maier. 2009. Lithium storage in carbon nanostructures. Advanced Materials 21 (25‐26):2664–80.
  • Kepler, K. D., F. Tsang, R. Vermeulen, and P. Hailey, “Process for recycling electrode materials from lithium-ion batteries,” Google Patents, 2017.
  • Kim, S., J. Bang, J. Yoo, Y. Shin, J. Bae, J. Jeong, K. Kim, P. Dong, and K. Kwon. 2021. :A Comprehensive Review on the Pretreatment Process in Lithium-ion Battery Recycling.“ Journal of Cleaner Production 294: 126329.
  • Kim, B. G., S. K. Choi, H. S. Chung, J. J. Lee, and F. Saito. 2002. Grinding characteristics of crystalline graphite in a low-pressure attrition system. Powder Technology 126 (1):22–27.
  • Kim, Y., M. Matsuda, A. Shibayama, and T. Fujita. 2004. Recovery of LiCoO2 from wasted lithium ion batteries by using mineral processing technology. Resources Processing 51 (1):3–7.
  • Kohs, W., H. J. Santner, F. Hofer, H. Schröttner, J. Doninger, I. Barsukov, H. Buqa, J. H. Albering, K. C. Möller, J. O. Besenhard, et al. 2003. A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase. Journal of Power Sources 119-121:528–37.
  • Lee, C. K., and K.-I. Rhee. 2002. Preparation of LiCoO2 from spent lithium-ion batteries. Journal of Power Sources 109 (1):17–21.
  • Li, L., R. Chen, F. Sun, F. Wu, and J. Liu. 2011. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108 (3–4):220–25.
  • Li, J., Y. He, Y. Fu, W. Xie, Y. Feng, and K. Alejandro. 2021. Hydrometallurgical enhanced liberation and recovery of anode material from spent lithium-ion batteries. Waste Management 126:517–26.
  • Li, J., G. Wang, and Z. Xu. 2016a. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Management 52:221–27.
  • Li, J., G. Wang, and Z. Xu. 2016b. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials 302:97–104.
  • Li, X., J. Zhang, D. Song, J. Song, and L. Zhang. 2017. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. Journal of Power Sources 345:78–84.
  • Lin, J., C. Liu, H. Cao, R. Chen, Y. Yang, L. Li, and Z. Sun. 2019. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chemistry 21 (21):5904–13.
  • Liu, C., J. Lin, H. Cao, Y. Zhang, and Z. Sun. 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production 228:801–13.
  • Liu, J., H. Wang, T. Hu, X. Bai, S. Wang, W. Xie, J. Hao, and Y. He. 2020. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation. Minerals Engineering 148:106223.
  • Liu, P., Y. Zhang, P. Dong, Y. Zhang, Q. Meng, S. Zhou, X. Yang, M. Zhang, and X. Yang. 2021. Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping. Journal of Alloys and Compounds 860:157909.
  • Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun. 2018. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6 (2):1504–21.
  • M.a. Markets. n.d. “Battery Coating Market by Battery Component (Electrode Coating, Separator Coating, Battery Pack Coating), Material Type (PVDF, Ceramic, Alumina, Oxide, Carbon, Others), and Region (Asia Pacific, North America, Europe, Row) - Global Forecast to 2025.“ Accessed 3 December 2020. https://www.marketsandmarkets.com/Market-Reports/battery-coating-market-24757097.html
  • Mansur, M. B., A. S. Guimarães, and M. Petraniková. 2021. “An Overview on the Recovery of Cobalt from End-of-life Lithium Ion Batteries.“ Mineral Processing and Extractive Metallurgy Review 42: 1–21. doi:10.1080/08827508.2021.1883014.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2021. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (2):123–41.
  • Meng, Q., Y. Zhang, and P. Dong. 2017. Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Management 64:214–18.
  • Meshram, P., B. Pandey, and T. Mankhand. 2015. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chemical Engineering Journal 281:418–27.
  • Mossali, E., N. Picone, L. Gentilini, O. Rodrìguez, J. M. Pérez, and M. Colledani. 2020. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of Environmental Management 264:110500.
  • Natarajan, S., H. C. Bajaj, and V. Aravindan. 2019. Template-free synthesis of carbon hollow spheres and reduced graphene oxide from spent lithium-ion batteries towards efficient gas storage. Journal of Materials Chemistry A 7 (7):3244–52.
  • Nie, M., D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht. 2013. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. The Journal of Physical Chemistry C 117 (3):1257–67.
  • Nie, C.-C., H. Zhang, X.-F. Qi, H.-Y. Shang, T.-Y. Li, P. Xue, J.-X. Wang, and X.-N. Zhu. 2021. “Environment-friendly Flotation Technology of Waste Printed Circuit Boards Assisted by Pyrolysis Pretreatment.“ Process Safety and Environmental Protection no. 152: 58–65.
  • Ojanen, S., M. Lundström, A. Santasalo-Aarnio, and R. Serna-Guerrero. 2018. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Waste Management 76:242–49.
  • Or, T., S. W. Gourley, K. Kaliyappan, A. Yu, and Z. Chen. 2020. Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2 (1):6–43.
  • Ordoñez, J., E. J. Gago, and A. Girard. 2016. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews 60:195–205.
  • Pan, S. 2020. “Natural Graphite Battles for Market Share in Battery Anodes.“ Industrial Minerals 3.
  • Pant, D., and T. Dolker. 2017. Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries. Waste Management 60:689–95.
  • Paulino, J. F., N. G. Busnardo, and J. C. Afonso. n.d. Recovery of valuable elements from spent Li-batteries. Journal of Hazardous Materials 150 (3):843–49. February 11, 2008.
  • Peng, W., C. Wang, Y. Hu, and S. Song. 2016. Effect of droplet size of the emulsified kerosene on the floatation of amorphous graphite. Journal of Dispersion Science and Technology 38 (6):889–94.
  • Pindar, S., and N. Dhawan. 2020a. Recycling of mixed discarded lithium-ion batteries via microwave processing route. Sustainable Materials and Technologies 25:e00157.
  • Pindar, S., and N. Dhawan. 2020b. Comparison of microwave and conventional indigenous carbothermal reduction for recycling of discarded lithium-ion batteries. Transactions of the Indian Institute of Metals 73 (8):2041–51.
  • Pinegar, H., and Y. R. Smith. 2019. Recycling of end-of-life lithium ion batteries, Part I: Commercial processes. Journal of Sustainable Metallurgy 5 (3):402–16.
  • Pinegar, H., and Y. R. Smith. 2020. Recycling of end-of-life lithium-ion batteries, Part II: Laboratory-scale research developments in mechanical, thermal, and leaching treatments. Journal of Sustainable Metallurgy 6 (1):142–60.
  • ProGraphite, “The outlook for EVs and future potential demand for graphite,” in 2nd International Minerals Conference, Maritim Pro-Arte Hotel, Berlin, Germany, 2015.
  • Pudas, J., A. Erkkila, and J. Viljamaa, “Battery recycling method,” Google Patents, 2015.
  • Pugh, R. 2000. Non-ionic polyethylene oxide frothers in graphite flotation. Minerals Engineering 13 (2):151–62.
  • Richa, K., C. W. Babbitt, G. Gaustad, and X. Wang. 2014. A future perspective on lithium-ion battery waste flows from electric vehicles. Resources, Conservation and Recycling 83:63–76.
  • Rothermel, S., M. Evertz, J. Kasnatscheew, X. Qi, M. Grützke, M. Winter, and S. Nowak. 2016. Graphite recycling from spent lithium‐ion batteries. ChemSusChem 9 (24):3473–84.
  • Ruhatiya, C., R. Gandra, P. Kondaiah, K. Manivas, A. Samhith, L. Gao, J. S. L. Lam, and A. Garg. 2021. Intelligent optimization of bioleaching process for waste lithium‐ion batteries: An application of support vector regression approach. International Journal of Energy Research 45 (4):6152–62.
  • Ruismäki, R., T. Rinne, A. Dańczak, P. Taskinen, R. Serna-Guerrero, and A. Jokilaakso. 2020. Integrating flotation and pyrometallurgy for recovering graphite and valuable metals from battery scrap. Metals 10 (5):680.
  • Sa, Q., E. Gratz, M. He, W. Lu, D. Apelian, and Y. Wang. 2015. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream. Journal of Power Sources 282:140–45.
  • Sa, Q., E. Gratz, J. A. Heelan, S. Ma, D. Apelian, and Y. Wang. 2016. Synthesis of diverse LiNi xMny CozO2 cathode materials from lithium ion battery recovery stream. Journal of Sustainable Metallurgy 2 (3):248–56.
  • Sabisch, J. E., A. Anapolsky, G. Liu, and A. M. Minor. 2018. Evaluation of using pre-lithiated graphite from recycled Li-ion batteries for new LiB anodes. Resources, Conservation and Recycling 129:129–34.
  • Saeki, S., J. Lee, Q. Zhang, and F. Saito. 2004. Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. International Journal of Mineral Processing 74:S373–S378.
  • Scerra, M. n.d.a. “Cobalt in Batteries: Global Demand 2017/2025.“ Accessed 19 September 2020. https://www.statista.com/statistics/877648/global-demand-for-cobalt-in-batteries/
  • Scerra, M. n.d.b. “Global Lithium-ion Battery Market 2020-2025.” Accessed 3 December 2020. https://www.statista.com/statistics/1011187/projected-global-lithium-ion-battery-market-size/
  • Schulz, K. J., J. H. DeYoung, R. R. Seal, and D. C. Bradley. 2018. Graphite Chapter J of Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Geological Survey.
  • Shaw, S. 2013. “Graphite Demand Growth: The Future of Lithium-ion Batteries in EVs and HEVs.” Proceedings of 37th ECGA General Assembly 30: 2015.
  • Shi, H., J. Barker, M. Saidi, and R. Koksbang. 1996. Structure and lithium intercalation properties of synthetic and natural graphite. Journal of the Electrochemical Society 143 (11):3466.
  • Shi, Y., G. Chen, and Z. Chen. 2018. Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles. Green Chemistry 20 (4):851–62.
  • Shi, Q., X. Liang, Q. Feng, Y. Chen, and B. Wu. 2015. The relationship between the stability of emulsified diesel and flotation of graphite. Minerals Engineering 78:89–92.
  • Shin, S. M., N. H. Kim, J. S. Sohn, D. H. Yang, and Y. H. Kim. 2005. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79 (3–4):172–81.
  • Shin, H., R. Zhan, K. S. Dhindsa, L. Pan, and T. Han. 2020. Electrochemical performance of recycled cathode active materials using froth flotation-based separation process. Journal of the Electrochemical Society 167 (2):020504.
  • Sloop, S. E. 2007. System and method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid. US Patent 2003O186110A1, p. 10.
  • Sloop, S. E. 2010. System and method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid. Google Patents.
  • Sloop, S. E. 2014. Reintroduction of lithium into recycled battery materials. Google Patents.
  • Sloop, S. E. 15 March 2016a. Recycling of battery electrode materials.
  • Sloop, S. E. 2016b. Reintroduction of lithium into recycled battery materials. Google Patents.
  • Sloop, S., L. Crandon, M. Allen, K. Koetje, L. Reed, L. Gaines, W. Sirisaksoontorn, and M. Lerner. 2020. A direct recycling case study from a lithium-ion battery recall. Sustainable Materials and Technologies 25:e00152.
  • Sloop, S. E., L. Crandon, M. Allen, M. M. Lerner, H. Zhang, W. Sirisaksoontorn, L. Gaines, J. Kim, and M. Lee. 2019. Cathode healing methods for recycling of lithium-ion batteries. Sustainable Materials and Technologies 22:e00113.
  • Sommerville, R., J. Shaw-Stewart, V. Goodship, N. Rowson, and E. Kendrick. 2020. “A Review of Physical Processes Used in the Safe Recycling of Lithium Ion Batteries.“ Sustainable Materials and Technologies 25: e00197.
  • Sommerville, R., P. Zhu, M. A. Rajaeifar, O. Heidrich, V. Goodship, and E. Kendrick. 2021. A qualitative assessment of lithium ion battery recycling processes. Resources, Conservation and Recycling 165:105219.
  • Sun, L., and K. Qiu. 2011. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of Hazardous Materials 194:378–84.
  • Suzuki, K., T. Hamada, and T. Sugiura. 1999. Effect of graphite surface structure on initial irreversible reaction in graphite anodes. Journal of the Electrochemical Society 146 (3):890.
  • Swoffer, W. N. S. A. S. 2013. Recovery of Lithium Ion Batteries, I. Toxco, Anaheim, CA (US), US 8,616,475 B1.
  • Tedjar, F., and J.-C. Foudraz, “Method for the mixed recycling of lithium-based anode batteries and cells,” Google Patents, 2010.
  • Ubbelohde, A. R., and F. A. Lewis. 1960. Graphite and Its Crystal Compounds. London England: Clarendon Press.
  • Vanderbruggen, A., E. Gugala, R. Blannin, K. Bachmann, R. Serna-Guerrero, and M. Rudolph. 2021a. Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries. Minerals Engineering 169:106924.
  • Vanderbruggen, A., J. Sygusch, M. Rudolph, and R. Serna-Guerrero. 2021b. “A Contribution to Understanding the Flotation Behavior of Lithium Metal Oxides and Spheroidized Graphite for Lithium-ion Battery Recycling.“ Colloids and Surfaces. A, Physicochemical and Engineering Aspects 626: 127111.
  • Velázquez-Martínez, O., J. Valio, A. Santasalo-Aarnio, M. Reuter, and R. Serna-Guerrero. 2019. A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5 (4):68.
  • Verma, P., P. Maire, and P. Novák. 2010. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 55 (22):6332–41.
  • Vetter, J., P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche. 2005. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 147 (1–2):269–81.
  • Vezzini, A. 2014. “Manufacturers, Materials and Recycling Technologies.” In Lithium-Ion Batteries, edited by Gianfranco Pistoia, 529–551. Elsevier. doi:10.1016/C2011-0-09658-8.
  • Vieceli, N., C. A. Nogueira, C. Guimarães, M. F. Pereira, F. O. Durão, and F. Margarido. 2018. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Waste Management 71:350–61.
  • Wakamatsu, T., and Y. Numata. 1991. Flotation of graphite. Minerals Engineering 4 (7–11):975–82.
  • Wakihara, M. 2001. Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports 33 (4):109–34.
  • Wan, C., H. Li, M. Wu, and C. Zhao. 2008. Spherical natural graphite coated by a thick layer of carbonaceous mesophase for use as an anode material in lithium ion batteries. Journal of Applied Electrochemistry 39 (7):1081–86.
  • Wang, X., G. Gaustad, and C. W. Babbitt. 2016. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management 51:204–13.
  • Wang, H., Y. Huang, C. Huang, X. Wang, K. Wang, H. Chen, S. Liu, Y. Wu, K. Xu, and W. Li. 2019a. Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochimica Acta 313:423–31.
  • Wang, A., S. Kadam, H. Li, S. Shi, and Y. Qi. 2018a. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Computational Materials 4 (1):1–26.
  • Wang, L., A. Menakath, F. Han, Y. Wang, P. Y. Zavalij, K. J. Gaskell, O. Borodin, D. Iuga, S. P. Brown, and C. Wang. 2019b. Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nature Chemistry 11 (9):789–96.
  • Wang, Q., P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen. 2012b. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources 208:210–24.
  • Wang, C., R. Sun, and B. Xing, “Copper recovery from waste printed circuit boards by flotation-leaching process optimized using response surface methodology,” Journal of the Air & Waste Management Association, no. just-accepted, 2021.
  • Wang, M., Q. Tan, L. Liu, and J. Li. 2019c. A Facile, Environmentally Friendly, and Low-Temperature Approach for Decomposition of Polyvinylidene Fluoride from the Cathode Electrode of Spent Lithium-ion Batteries. ACS Sustainable Chemistry & Engineering 7 (15):12799–806.
  • Wang, H., and J. F. Whitacre. 2018. Direct Recycling of Aged LiMn2O4 Cathode Materials used in Aqueous Lithium‐ion Batteries: Processes and Sensitivities. Energy Technology 6 (12):2429–37.
  • Wang, F., T. Zhang, Y. He, Y. Zhao, S. Wang, G. Zhang, Y. Zhang, and Y. Feng. 2018b. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment. Journal of Cleaner Production 185:646–52.
  • Wang, -M.-M., -C.-C. Zhang, and F.-S. Zhang. 2016. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management 51:239–44.
  • Wang, L., J. Zhao, X. He, J. Ren, H. Zhao, J. Gao, J. Li, C. Wan, and C. Jiang. 2012a. Investigation of modified nature graphite anodes by electrochemical impedance spectroscopy. International Journal of Electrochemical Science 7 (1):554.
  • Widijatmoko, S. D., G. Fu, Z. Wang, and P. Hall. 2020a. Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing. Journal of Cleaner Production 260:120869.
  • Widijatmoko, S. D., F. Gu, Z. Wang, and P. Hall. 2020b. Selective liberation in dry milled spent lithium-ion batteries. Sustainable Materials and Technologies 23:e00134.
  • Wills, B. A., and J. Finch. 2015. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. 8th ed. London: Elsevier.
  • Wu, Y., C. Jiang, C. Wan, and R. Holze. 2003. Anode materials for lithium ion batteries by oxidative treatment of common natural graphite. Solid State Ionics 156 (3–4):283–90.
  • Wu, Z., H. Zhu, H. Bi, P. He, and S. Gao. 2021. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments. Waste Management & Research 39 (4):607–19.
  • Wuschke, L., H.-G. Jäckel, T. Leißner, and U. A. Peuker. 2019. Crushing of large Li-ion battery cells. Waste Management 85:317–26.
  • Xiao, Z., L. Gao, S. Su, D. Li, L. Cao, L. Ye, B. Zhang, L. Ming, and X. Ou. 2021. Efficient fabrication of metal sulfides/graphite anode materials derived from spent lithium-ion batteries by gas sulfidation process. Materials Today Energy 21:100821.
  • Xiao, J., J. Guo, L. Zhan, and Z. Xu. 2020. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. Journal of Cleaner Production 255:120064.
  • Xiao, J., J. Li, and Z. Xu. 2017a. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. Journal of Hazardous Materials 338:124–31.
  • Xiao, J., J. Li, and Z. Xu. 2017b. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy. Environmental Science & Technology 51 (20):11960–66.
  • Xu, J., H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang. 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources 177 (2):512–27.
  • Y. Tian, L., X. B. Huang, and X. Z. Tang. 2004. Study on morphology behavior of PVDF‐based electrolytes. Journal of Applied Polymer Science 92 (6):3839–42.
  • Yang, H., B. Deng, X. Jing, W. Li, and D. Wang. 2021. Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications. Waste Management 129:85–94.
  • Yang, Y., G. Huang, S. Xu, Y. He, and X. Liu. 2016. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165:390–96.
  • Yang, T., Y. Lu, L. Li, D. Ge, H. Yang, W. Leng, H. Zhou, X. Han, N. Schmidt, and M. Ellis. 2020. An Effective Relithiation Process for Recycling Lithium‐Ion Battery Cathode Materials. Advanced Sustainable Systems 4 (1):1900088.
  • Yang, X., Y. Mi, W. Zhang, B. Wu, and H. Zhou. 2015. Enhanced electrochemical performance of LiFe0. 6Mn 0. 4PO 4/C cathode material prepared by ferrocene-assisted calcination process. Journal of Power Sources 275:823–30.
  • Yang, Y., S. Song, S. Lei, W. Sun, H. Hou, F. Jiang, X. Ji, W. Zhao, and Y. Hu. 2019b. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Management 85:529–37.
  • Yang, L., L. Yang, G. Xu, Q. Feng, Y. Li, E. Zhao, J. Ma, S. Fan, and X. Li. 2019a. Separation and recovery of carbon powder in anodes from spent lithium-ion batteries to synthesize graphene. Scientific Reports 9 (1):1–7.
  • Yang, Y., X. Zheng, H. Cao, C. Zhao, X. Lin, P. Ning, Y. Zhang, W. Jin, and Z. Sun. 2017. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustainable Chemistry & Engineering 5 (11):9972–80.
  • Yao, L. P., Q. Zeng, T. Qi, and J. Li. 2020. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. Journal of Cleaner Production 245:118820.
  • Yoshio, M., H. Wang, K. Fukuda, Y. Hara, and Y. Adachi. 2000. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material. Journal of the Electrochemical Society 147 (4):1245.
  • Yu, H., H. Dai, Y. Zhu, H. Hu, R. Zhao, B. Wu, and D. Chen. 2021a. Mechanistic insights into the lattice reconfiguration of the anode graphite recycled from spent high-power lithium-ion batteries. Journal of Power Sources 481:229159.
  • Yu, J., Y. He, Z. Ge, H. Li, W. Xie, and S. Wang. 2018. A promising physical method for recovery of LiCoO 2 and graphite from spent lithium-ion batteries: Grinding flotation. Separation and Purification Technology 190:45–52.
  • Yu, J., Y. He, H. Li, W. Xie, and T. Zhang. 2017. Effect of the secondary product of semi-solid phase Fenton on the flotability of electrode material from spent lithium-ion battery. Powder Technology 315:139–46.
  • Yu, J., Y. He, L. Qu, J. Yang, W. Xie, and X. Zhu. 2020. Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries. Journal of Cleaner Production 274:123066.
  • Yu, J., M. Lin, Q. Tan, and J. Li. 2021b. High-value utilization of graphite electrodes in spent lithium-ion batteries: From 3D waste graphite to 2D graphene oxide. Journal of Hazardous Materials 401:123715.
  • Yue, Y., S. Wei, B. Yongjie, Z. Chenyang, S. Shaole, and H. Yuehua. 2018. Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching. ACS Sustainable Chemistry & Engineering 6 (8):10445–53.
  • Zaghib, K., G. Nadeau, and K. Kinoshita. 2000. Effect of graphite particle size on irreversible capacity loss. Journal of the Electrochemical Society 147 (6):2110.
  • Zeng, X., J. Li, and N. Singh. 2014. Recycling of Spent Lithium-Ion Battery: A Critical Review. Critical Reviews in Environmental Science and Technology 44 (10):1129–65.
  • Zhan, R., Z. Oldenburg, and L. Pan. 2018. Recovery of active cathode materials from lithium-ion batteries using froth flotation. Sustainable Materials and Technologies 17:e00062.
  • Zhan, R., T. Payne, T. Leftwich, K. Perrine, and L. Pan. 2020a. De-agglomeration of cathode composites for direct recycling of Li-ion batteries. Waste Management 105:39–48.
  • Zhan, R., Z. Yang, I. Bloom, and L. Pan. 2020b. “Significance of a Solid Electrolyte Interphase on Separation of Anode and Cathode Materials from Spent Li-ion Batteries by Froth Flotation.“ ACS Sustainable Chemistry & Engineering 9 (1): 531–540. doi:10.1021/acssuschemeng.0c07965.
  • Zhang, S. S. 2006. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 162 (2):1379–94.
  • Zhang, G., Z. Du, Y. He, H. Wang, W. Xie, and T. Zhang. 2019a. A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries. Sustainability 11 (8):2363.
  • Zhang, G., Y. He, Y. Feng, H. Wang, T. Zhang, W. Xie, and X. Zhu. 2018a. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis. Journal of Cleaner Production 199:62–68.
  • Zhang, G., Y. He, Y. Feng, H. Wang, and X. Zhu. 2018b. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6 (8):10896–904.
  • Zhang, T., Y. He, L. Ge, R. Fu, X. Zhang, and Y. Huang. 2013. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. Journal of Power Sources 240:766–71.
  • Zhang, G., Y. He, H. Wang, Y. Feng, W. Xie, and X. Zhu. 2019b. Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries. Journal of Cleaner Production 231:1418–27.
  • Zhang, G., Y. He, H. Wang, Y. Feng, W. Xie, and X. Zhu. 2020a. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 8 (5):2205–14.
  • Zhang, T., Y. He, F. Wang, L. Ge, X. Zhu, and H. Li. June 2014a. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Manag 34(6):1051–58.
  • Zhang, T., Y. He, F. Wang, H. Li, C. Duan, and C. Wu. 2014b. Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy. Separation and Purification Technology 138:21–27.
  • Zhang, Y., Y. He, T. Zhang, X. Zhu, Y. Feng, G. Zhang, and X. Bai. 2018d. Application of Falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries. Journal of Cleaner Production 202:736–47.
  • Zhang, X., L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, and R. Chen. 2018c. Toward sustainable and systematic recycling of spent rechargeable batteries. Chemical Society Reviews 47 (19):7239–302.
  • Zhang, W., Z. Liu, J. Xia, F. Li, W. He, G. Li, and J. Huang. 2017. Preparing graphene from anode graphite of spent lithium-ion batteries. Frontiers of Environmental Science & Engineering 11 (5):1–8.
  • Zhang, G., X. Yuan, Y. He, H. Wang, W. Xie, and T. Zhang. 2020b. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO2 derived from spent lithium-ion batteries. Waste Management 115:113–20.
  • Zhao, Y., L.-Z. Fang, Y.-Q. Kang, L. Wang, Y.-N. Zhou, X.-Y. Liu, T. Li, Y.-X. Li, Z. Liang, and Z.-X. Zhang. 2021. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Metals 40 (6):1431–36.
  • Zhao, Y., B. Liu, L. Zhang, and S. Guo. 2020. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. Journal of Hazardous Materials 384:121487.
  • Zhao, H., J. Ren, X. He, J. Li, C. Jiang, and C. Wan. 2008. Modification of natural graphite for lithium ion batteries. Solid State Sciences 10 (5):612–17.
  • Zhao, C., and X. Zhong. 2020. Reverse flotation process for the recovery of pyrolytic LiFePO4. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 596:124741.
  • Zheng, X., W. Gao, X. Zhang, M. He, X. Lin, H. Cao, Y. Zhang, and Z. Sun. 2017b. Spent lithium-ion battery recycling–Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Management 60:680–88.
  • Zheng, R., W. Wang, Y. Dai, Q. Ma, Y. Liu, D. Mu, R. Li, J. Ren, and C. Dai. 2017a. A closed-loop process for recycling LiNixCoyMn (1− x− y) O2 from mixed cathode materials of lithium-ion batteries. Green Energy & Environment 2 (1):42–50.
  • Zhong, X., W. Liu, J. Han, F. Jiao, W. Qin, T. Liu, and C. Zhao. 2019. Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries. Waste Management 89:83–93.
  • Zhu, X. N., C. C. Nie, H. Zhang, X. J. Lyu, J. Qiu, and L. Li. 2019. Recovery of metals in waste printed circuit boards by flotation technology with soap collector prepared by waste oil through saponification. Waste Manag 89:21–26. 15 April.
  • Zhu, X., C. Zhang, P. Feng, X. Yang, and X. Yang. 2021. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries. Waste Management 131:20–30.
  • Zou, H., E. Gratz, D. Apelian, and Y. Wang. 2013. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry 15 (5):1183–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.