413
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Thermal Decomposition of Siderite Ore in Different Flowing Atmospheres: Phase Transformation and Magnetism

, , , &

References

  • Bai, S., L. Chao, S. Wen, D. Liu, W. Zhang, and Q. Cao. 2013. Effects of sodium carbonate on the carbothermic reduction of siderite ore with high phosphorus content. Mining, Metallurgy & Exploration 30:100–07. doi:10.1007/BF03402412.
  • Bai, S. J., C. Lv, S. M. Wen, D. W. Liu, and W. B. Zhang. 2014. Removal of harmful elements and sodium carbonate reinforced carbothermic reduction of siderite ore with high phosphorus and sulphur content. Ironmaking & Steelmaking 41:138–46. doi:10.1179/1743281213Y.0000000129.
  • Bai, S., W. Meng, L. Chao, and S. Wen. 2016. Microstructure characteristic and phase evolution of refractory siderite ore during sodium-carbonate-added catalyzing carbothermic reduction. Journal of Iron and Steel Research International 23:891–99. doi:10.1016/S1006-706X(16)30136-4.
  • Bai, S. J., S. M. Wen, D. W. Liu, and W. B. Zhang. 2012a. Carbothermic reduction of siderite ore with high phosphorus content reinforced by sodium carbonate. Canadian Metallurgical Quarterly 51:376–82. doi:10.1179/1879139512Y.0000000021.
  • Bai, S., S. Wen, D. Liu, W. Zhang, and Q. Cao. 2012b. Beneficiation of high phosphorus limonite ore by sodium-carbonate-added carbothermic reduction. ISIJ International 52:1757–63. doi:10.2355/isijinternational.52.1757.
  • Bai, S., S. Wen, D. Liu, W. Zhang, and Y. Xian. 2011. Catalyzing carbothermic reduction of siderite ore with high content of phosphorus by adding sodium carbonate. ISIJ International 51:1601–07. doi:10.2355/isijinternational.51.1601.
  • Canterford, J. H. 1985. Magnesia—an important industrial mineral: A review of processing options and uses. Mineral Processing and Extractive Metallurgy Review 2:57–104. doi:10.1080/08827508508952601.
  • Chun, T., D. Zhu, and J. Pan. 2015. Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores. Mineral Processing and Extractive Metallurgy Review 36:223–26. doi:10.1080/08827508.2014.928620.
  • French, B. M. 1971. Stability relations of siderite (FeCO3) in system Fe-C-O. American Journal of Science 271:37–78. doi:10.2475/ajs.271.1.37.
  • Gallagher, P. K., and S. J. St. Warne. 1981. Thermomagnetometry and thermal decomposition of siderite. Thermochimica Acta 43:253–67. doi:10.1016/0040-6031(81)85183-0.
  • Goldin, D. M., and G. V. Kulikova. 1984. On the dissociation mechanism of carbonates and their isomorphous mixture. Journal of Thermal Analysis 29:139–45. doi:10.1007/BF02069949.
  • Han, H., W. Yin, J. Yao, and L. Dong. 2019. Effect and mechanism of citric acid on flotation separation of siderite and hematite. Physicochemical Problems of Mineral Processing 55:311–23. doi:10.5277/ppmp18133.
  • Hao, H., L. Lixia, Z. Yuan, P. Patra, and P. Somasundaran. 2019. Adsorption differences of sodium oleate on siderite and hematite. Minerals Engineering 137:10–18. doi:10.1016/j.mineng.2019.03.023.
  • Kawatra, S. K., and V. Claremboux. 2021. Iron ore pelletization: Part II. Inorganic binders. Mineral Processing and Extractive Metallurgy Review. doi:10.1080/08827508.2021.1947269.
  • Kholodov, V. N., and G. Y. Butuzova. 2008. Siderite formation and evolution of sedimentary iron ore deposition in the Earth’s history. Geology of Ore Deposits 50:299–319. doi:10.1134/S107570150804003x.
  • Kholodov, V. N., Butuzova, and G. Yu. 2004a. Problems of siderite formation and iron ore epochs: Communication 1. Types of siderite-bearing iron ore deposits. Lithology & Mineral Resources 39:389–411. doi:10.1023/B:LIMI.0000040731.36093.3a.
  • Kholodov, V. N., and B. G. Yu. 2004b. Problems of siderite formation and iron ore epochs: Communication 2. General issues of the precambrian and phanerozoic ore accumulation. Lithology & Mineral Resources 39:489–508. doi:10.1023/B:LIMI.0000046953.37719.31.
  • Li, G. 2018. The Chinese iron ore deposits and ore production, In Iron ores and iron oxide materials IntechOpen. doi:10.5772/intechopen.76729.
  • Li, L. X., W. Z. Yin, D. Feng, and B. Zhang. 2012. Effect of siderite on reverse flotation of Dong Anshan iron ore containing carbonates. Advanced Materials Research 455-456:91–96.
  • Li, D., W.-Z. Yin, J.-W. Xue, J. Yao, F. Ya-feng, and Q. Liu. 2017. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate. International Journal of Minerals, Metallurgy, and Materials 24:736–44. doi:10.1007/s12613-017-1457-7.
  • Luo, X., Y. Wang, S. Wen, M. Mingze, C. Sun, W. Yin, and M. Yingqiang. 2016a. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores. International Journal of Mineral Processing 152:1–6. doi:10.1016/j.minpro.2016.04.008.
  • Luo, Y. H., D. Q. Zhu, J. Pan, and X. L. Zhou. 2016b. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Mineral Processing and Extractive Metallurgy 125:17–25. doi:10.1080/03719553.2015.1118213.
  • Ministry of Natural Resources, PRC. 2019. China mineral resources 2019. Accessed April 6, 2020. http://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/201910/P020191022538918416752.pdf.
  • Ponomar, V. P., N. O. Dudchenko, and A. B. Brik. 2018. Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores. Minerals Engineering 122:277–84. doi:10.1016/j.mineng.2018.04.018.
  • Sun, Y., X. Zhu, Y. Han, and L. Yanjun. 2019. Green magnetization roasting technology for refractory iron ore using siderite as a reductant. Journal of Cleaner Production 206:40–50. doi:10.1016/j.jclepro.2018.09.113.
  • Thompson, R. 2012. Environmental magnetism. Springer Science & Business Media.
  • Vusikhis, A. S., L. I. Leont’Ev, and D. Z. Kudinov. 2017. Use of bakal deposit siderite ore in iron and steel production. Metallurgist 61:116–20. doi:10.1007/s11015-017-0463-3.
  • Vusikhis, A. S., L. I. Leont’ev, D. Z. Kudinov, and V. S. Gulyakov. 2016. Metallization of siderite ore in reducing roasting. Russian Metallurgy (Metally) 2016:404–08. doi:10.1134/S0036029516050153.
  • Wang, C., and Y. Yang. 2017. Study on magnetization roasting process of ore powders in shaft furnace in jiuquan steel company. Metal Mine 9:96–100.
  • Wills, B. A., and T. Napier-Munn. 2005. 13 - Magnetic and electrical separation. Wills’ mineral processing technology, Seventh ed., 353–72. B. A. Wills and T. Napier-Munn. Oxford: Butterworth-Heinemann.
  • Yin, W.-Z., Y.-X. Han, and F. Xie. 2010. Two-step flotation recovery of iron concentrate from Dong Anshan carbonaceous iron ore. Journal of Central South University of Technology 17:750–54. doi:10.1007/s11771-010-0551-z.
  • Yu, J., Y. Han, Y. Li, and P. Gao. 2019. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade. Mineral Processing and Extractive Metallurgy Review 1–11. doi:10.1080/08827508.2019.1634565.
  • Yu, J., Y. Han, Y. Li, P. Gao, and Y. Sun. 2017. Separation and recovery of iron from a low-grade carbonate-bearing iron ore using magnetizing roasting followed by magnetic separation. Separation Science and Technology 52:1768–74. doi:10.1080/01496395.2017.1296867.
  • Yuan, S., W. Zhou, Y. Han, and L. Yanjun. 2020. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology. Minerals Engineering 152:106359. doi:10.1016/j.mineng.2020.106359.
  • Zhang, X., Y. Han, L. Yanjun, and Y. Sun. 2017. Effect of heating rate on pyrolysis behavior and kinetic characteristics of siderite. minerals 7:211. doi:10.3390/min7110211.
  • Zhang, C., L. Lixia, Z. Yuan, X. Xinyang, Z. Song, and Y. Zhang. 2019. Probing the effect of particle imperfections on the sliming of siderite in carbonate-bearing iron ore. Minerals Engineering 143:106014. doi:10.1016/j.mineng.2019.106014.
  • Zhang, Q., Y. Sun, Y. Han, P. Gao, and L. Yanjun. 2021. Thermal decomposition kinetics of siderite ore during magnetization roasting. Mining, Metallurgy & Exploration 38:1497–508. doi:10.1007/s42461-021-00417-8.
  • Zhang, Q., Y. Sun, Y. Han, L. Yanjun, and P. Gao. 2020. Effect of thermal oxidation pretreatment on the magnetization roasting and separation of refractory iron ore. Mineral Processing and Extractive Metallurgy Review 1–6. doi:10.1080/08827508.2020.1837126.
  • Zhou, W., Y. Sun, Y. Han, P. Gao, and L. Yanjun. 2021. Recycling iron from oolitic hematite via microwave fluidization roasting and magnetic separation. Minerals Engineering 164:106851. doi:10.1016/j.mineng.2021.106851.
  • Zhu, X., Y. Han, Y. Sun, L. Yanjun, and H. Wang. 2019. Siderite as a novel reductant for clean utilization of refractory iron ore. Journal of Cleaner Production 118704. doi:10.1016/j.jclepro.2019.118704.
  • Zhu, D., Y. Luo, J. Pan, and X. Zhou. 2016. Reaction mechanism of siderite lump in coal-based direct reduction. High Temperature Materials and Processes 35:185–94. doi:10.1515/htmp-2014-0176.
  • Zhu, D., X. Zhou, J. Pan, and Y. Luo. 2014. Direct reduction and beneficiation of a refractory siderite lump. Mineral Processing and Extractive Metallurgy 123:246–50. doi:10.1179/1743285514Y.0000000081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.