1,205
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the Matte/Slag/Spinel/Gas Equilibria in the Cu-Fe-O-S-SiO2-(CaO, Al2O3) system at 1250 °C and pSO2 of 0.25 atm

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Abdeyazdan, H., A. Fallah-Mehrjardi, T. Hidayat, M. Shevchenko, P. C. Hayes, and E. Jak. 2020a. The effect of MgO on gas-slag-matte-tridymite equilibria in fayalite-based copper smelting slags at 1473 K (1200 °C) and 1573 K (1300 °C), and P(SO2) = 0.25 atm. Journal of Phase Equilibria and Diffusion 41 (1):44–55. doi:10.1007/s11669-020-00778-5.
  • Abdeyazdan, H., A. Fallah-Mehrjardi, T. Hidayat, M. Shevchenko, P. C. Hayes, and E. Jak. 2020b. Experimental study of gas-slag-matte-tridymite equilibria in the Cu-Fe-O-S-Si-Al system at 1573 K (1300 °C) and P(SO2) = 0.25 atm. Journal of Phase Equilibria and Diffusion 41 (1):66–78. doi:10.1007/s11669-020-00779-4.
  • Avarmaa, K., H. Johto, and P. Taskinen. 2016. Distribution of precious metals (Ag, Au, Pd, Pt, and Rh) between copper matte and iron silicate slag. Metallurgical and Materials Transactions B 47 (1):244–55. doi:10.1007/s11663-015-0498-4.
  • Avarmaa, K., H. O’Brien, H. Johto, and P. Taskinen. 2015. Equilibrium distribution of precious metals between slag and copper matte at 1250-1350 °C. Journal of Sustainable Metallurgy 1 (3):216–28. doi:10.1007/s40831-015-0020-x.
  • Avarmaa, K., H. O’Brien, L. Klemettinen, and P. Taskinen. 2020. Precious metal recoveries in secondary copper smelting with high-alumina slags. Journal of Material Cycles and Waste Management 22 (3):642–55. doi:10.1007/s10163-019-00955-w.
  • Avarmaa, K., H. O’Brien, M. Valkama, L. Klemettinen, E. Niemi, and P. Taskinen. 2018b. Properties of Na2O-SiO2 slags in Doré smelting. Mineral Processing and Extractive Metallurgy Review 39 (2):125–35. doi:10.1080/08827508.2017.1391246.
  • Avarmaa, K., D. Strengell, H. Johto, P. Latostenmaa, H. O’Brien, and P. Taskinen. 2022. Solubility of chromium in DON smelting. Mineral Processing and Extractive Metallurgy Review 43 (2):201–08. doi:10.1080/08827508.2020.1854251.
  • Avarmaa, K., S. Yliaho, and P. Taskinen. 2018a. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting. Waste Management 71:400–10. doi:10.1016/j.wasman.2017.09.037.
  • Chen, M., K. Avarmaa, L. Klemettinen, H. O’Brien, J. Shi, P. Taskinen, D. Lindberg, and A. Jokilaakso. 2021a. Precious metal distributions between copper matte and slag at high PSO2 in WEEE reprocessing. Metallurgical and Materials Transactions B 52B (2):871–82. doi:10.1007/s11663-021-02059-z.
  • Chen, M., K. Avarmaa, L. Klemettinen, H. O’Brien, D. Sukhomlinov, J. Shi, P. Taskinen, and A. Jokilaakso. 2020a. Recovery of precious metals (Au, Ag, Pt, and Pd) from urban mining through copper smelting. Metallurgical and Materials Transactions B 51B (4):1495–508. doi:10.1007/s11663-020-01861-5.
  • Chen, M., K. Avarmaa, L. Klemettinen, J. Shi, P. Taskinen, and A. Jokilaakso. 2020b. Experimental study on the phase equilibrium of copper matte and silica-saturated FeOx-SiO2-based slags in pyrometallurgical WEEE processing. Metallurgical and Materials Transactions B 51B (4):1552–63. doi:10.1007/s11663-020-01874-0.
  • Chen, M., K. Avarmaa, L. Klemettinen, J. Shi, P. Taskinen, D. Lindberg, and A. Jokilaakso. 2020c. Equilibrium of copper matte and silica-saturated iron silicate slags at 1300 °C and PSO2 of 0.5 atm. Metallurgical and Materials Transactions B 51B (5):2107–18. doi:10.1007/s11663-020-01933-6.
  • Chen, M., K. Avarmaa, P. Taskinen, L. Klemettinen, R. Michallik, H. O’Brien, and A. Jokilaakso. 2021b. Handling trace elements in WEEE recycling through copper smelting-an experimental and thermodynamic study. Minerals Engineering 173:107189. doi:10.1016/j.mineng.2021.107189.
  • Chen, M., Z. X. Cui, B. J. Zhao, et al. 2015. Slag chemistry of bottom blown copper smelting furnace at Dongying Fangyuan. In 6th International Symposium on High-Temperature Metallurgical Processing, ed. T. Jiang, 257–64. Cham: Springer. doi:10.1007/978-3-319-48217-0_33.
  • Chen, M., Y. Sun, E. Balladares, C. Pizarro, and B. Zhao. 2019. Experimental studies of liquid/spinel/matte/gas equilibria in the Si-Fe-O-Cu-S system at controlled P(SO2) 0.3 and 0.6 atm. Calphad 66:101642. doi:10.1016/j.calphad.2019.101642.
  • Davies, R. H., A. T. Dinsdale, J. A. Gisby, J. A. J. Robinson, and A. M. Martin. 2002. MTDATA-thermodynamic and phase equilibrium software from the national physical laboratory. Calphad 26 (2):229–71. doi:10.1016/S0364-5916(02)00036-6.
  • Djordjevic, P., N. Mitevska, I. Mihajlovic, D. Nikolic, and Z. Zivkovic. 2014. Effect of the slag basicity on the coefficient of distribution between copper matte and the slag for certain metals. Mineral Processing and Extractive Metallurgy Review 35 (3):202–07. doi:10.1080/08827508.2012.738731.
  • Fallah-Mehrjardi, A., P. C. Hayes, and E. Jak. 2018a. The effect of CaO on gas/slag/matte/tridymite equilibria in fayalite-based copper smelting slags at 1473 K (1200 °C) and P(SO2) = 0.25 atm. Metallurgical and Materials Transactions B 49B (2):602–09. doi:10.1007/s11663-018-1170-6.
  • Fallah-Mehrjardi, A., T. Hidayat, P. C. Hayes, and E. Jak. 2017a. Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled atmospheres: Development of technique. Metallurgical and Materials Transactions B 48B (6):3002–16. doi:10.1007/s11663-017-1073-y.
  • Fallah-Mehrjardi, A., T. Hidayat, P. C. Hayes, and E. Jak. 2017b. Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled gas atmospheres: Experimental results at 1473 K (1200 °C) and P(SO2) = 0.25 atm. Metallurgical and Materials Transactions B 48B (6):3017–26. doi:10.1007/s11663-017-1076-8.
  • Fallah-Mehrjardi, A., T. Hidayat, P. C. Hayes, and E. Jak. 2018b. Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled gas atmosphere: Experimental results at 1523 K (1250 °C) and P(SO2) = 0.25 atm. Metallurgical and Materials Transactions B 49B (4):1732–39. doi:10.1007/s11663-018-1260-5.
  • Gisby, J., P. Taskinen, J. Pihlasalo, Z. Li, M. Tyrer, J. Pearce, K. Avarmaa, P. Björklund, H. Davies, M. Korpi, et al. 2017. MTDATA and the prediction of phase equilibria in oxide systems: 30 years of industrial collaboration. Metallurgical and Materials Transactions B 48B (1):91–98. doi:10.1007/s11663-016-0811-x.
  • Hidayat, T., A. Fallah-Mehrjardi, P. C. Hayes, and E. Jak. 2018. Experimental investigation of gas/slag/ matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. Metallurgical and Materials Transactions B 49B (4):1750–65. doi:10.1007/s11663-018-1262-3.
  • Hidayat, T., A. F. Mehrjardi, P. C. Hayes, and E. Jak. 2016. Experimental study of gas/slag/matte/spinel equilibria and minor elements partitioning in the Cu-Fe-O-S-Si system. In Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, ed. R. G. Reddy, P. Chaubal, P. C. Pistorius, and U. Pal, 1207–20. Cham: Springer. doi:10.1007/978-3-319-48769-4_130.
  • Hidayat, T., A. F. Mehrjardi, P. C. Hayes, and E. Jak. 2020. The influence of temperature on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at fixed P(SO2) = 0.25 atm. Metallurgical and Materials Transactions B 51B (3):963–72. doi:10.1007/s11663-020-01807-x.
  • Klemettinen, L., K. Avarmaa, and P. Taskinen. 2017. Slag chemistry of high-alumina iron silicate slags at 1300 °C in WEEE smelting. Journal of Sustainable Metallurgy 3 (4):772–81. doi:10.1007/s40831-017-0141-5.
  • Li, H., and W. J. Rankin. 1994. Thermodynamics and phase relations of the Fe-O-S-SiO2 (sat) system at 1200 °C and the effect of copper. Metallurgical and Materials Transactions B 25B (1):79–89. doi:10.1007/BF02663181.
  • Nagamori, M. 1974. Metal loss to slag: Part I. Sulfidic and oxidic dissolution of copper in fayalite slag from low grade matte. Metallurgical and Materials Transactions B 5 (3):531–38. doi:10.1007/BF02644646.
  • Nikolic, S., P. C. Hayes, and E. Jak. 2009. Liquidus temperatures in the “Cu2O”-FeO-Fe2O3-CaO-SiO2 system at metallic copper saturation, at fixed oxygen partial pressures, and in equilibrium with spinel or dicalcium ferrite at 1200 C and 1250 °C. Metallurgical and Materials Transactions B 40 (6):910–19. doi:10.1007/s11663-009-9295-2.
  • Pouchou, J. L., and F. Pichoir. 1986. Basic expression of “PAP” computation for quantitative EPMA. In 11th International Congress on X-ray Optics and Microanalysis (ICXOM), (J. D. Brown and R. H. Packwood, Eds.), Ontario, Canada: Publ. Univ. Western Ontario, pp. 249–256.
  • Roghani, G., Y. Takeda, and K. Itagaki. 2000. Phase equilibrium and minor element distribution between FeOx-SiO2-MgO-based slag and Cu2S-FeS matte at 1573 K under high partial pressures of SO2. Metallurgical and Materials Transactions B 31B (4):705–12. doi:10.1007/s11663-000-0109-9.
  • Shishin, D., T. Hidayat, S. Decterov, and E. Jak. 2016. Thermodynamic modelling of liquid slag-matte-metal equilibria applied to the simulation of the Peirce-Smith converter. In Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, ed. R. G. Reddy, P. Chaubal, P. C. Pistorius, and U. Pal, 1379–88. Cham: Springer. doi:10.1007/978-3-319-48769-4_150.
  • Sineva, S., A. Fallah-Mehrjardi, T. Hidayat, P. C. Hayes, and E. Jak. 2020. Experimental study of the individual effects of Al2O3, CaO and MgO on gas/slag/matte/spinel equilibria in Cu-Fe-O-S-Si-Al-Ca-Mg system at 1473 K (1200 °C) and p(SO2) = 0.25 atm. Journal of Phase Equilibria and Diffusion 41 (6):859–69. doi:10.1007/s11669-020-00847-9.
  • Sineva, S., T. Hidayat, A. Fallah-Mehrjardi, R. Starykh, P. C. Hayes, and E. Jak. 2021a. Experimental investigation of gas-matte-spinel and gas-slag-matte-spinel equilibria in the Cu-Fe-O-S-Si system at 1200 °C: Effect of SO2 partial pressure. Mineral Processing and Extractive Metallurgy 1–8. doi:10.1080/25726641.2021.1919375.
  • Sineva, S., M. Shevchenko, P. C. Hayes, and E. Jak. 2021b. Experimental measurements of slag/matte/metal/tridymite phase equilibria in the Cu-Fe-O-S-Si system at 1200 °C. Mineral Processing and Extractive Metallurgy Review 1–11. doi:10.1080/08827508.2021.1998042.
  • Sridhar, R., J. M. Toguri, and S. Simeonov. 1997. Copper losses and thermodynamic considerations in copper smelting. Metallurgical and Materials Transactions B 28 (2):191–200. doi:10.1007/s11663-997-0084-5.
  • Sukhomlinov, D., K. Avarmaa, O. Virtanen, P. Taskinen, and A. Jokilaakso. 2019b. Slag-copper equilibria of selected trace elements in black copper smelting. Part I. Properties of the slag and chromium solubility. Mineral Processing and Extractive Metallurgy Review 41 (1):32–40. doi:10.1080/08827508.2019.1575212.
  • Sukhomlinov, D., K. Avarmaa, O. Virtanen, P. Taskinen, and A. Jokilaakso. 2020. Slag-copper equilibria of selected trace elements in black-copper smelting. Part II. Trace element distributions. Mineral Processing and Extractive Metallurgy Review 41 (3):171–77. doi:10.1080/08827508.2019.1634561.
  • Sukhomlinov, D., L. Klemettinen, H. O’Brien, P. Taskinen, and A. Jokilaakso. 2019a. Behavior of Ga, In, Sn, and Te in copper matte smelting. Metallurgical and Materials Transactions B 50B (6):2723–32. doi:10.1007/s11663-019-01693-y.
  • Sun, Y., M. Chen, E. Balladares, C. Pizarro, L. Contreras, and B. Zhao. 2020a. Effect of CaO on the liquid/spinel/matte/gas equilibria in the Si-Fe-O-Cu-S system at controlled P(SO2) 0.3 and 0.6 atm. Calphad 69:101751. doi:10.1016/j.calphad.2020.101751.
  • Sun, Y., M. Chen, E. Balladares, C. Pizarro, L. Contreras, and B. Zhao. 2020b. Effect of MgO on the liquid/spinel/matte/gas equilibria in the Si-Fe-Mg-O-Cu-S system at controlled P(SO2) 0.3 and 0.6 atm. Calphad 70:101803. doi:10.1016/j.calphad.2020.101803.
  • Sun, Y., M. Chen, Z. Cui, L. Contreras, and B. Zhao. 2020c. Phase equilibrium studies of iron silicate slag under direct to blister copper-making condition. Metallurgical and Materials Transactions B 51B (1):1–5. doi:10.1007/s11663-019-01744-4.
  • Sun, Y., M. Chen, Z. Cui, L. Contreras, and B. Zhao. 2020d. Phase equilibrium studies of iron silicate slag in the liquid/spinel/white metal/gas system for copper converting process. Metallurgical and Materials Transactions B 51B (2):426–32. doi:10.1007/s11663-020-01786-z.
  • Sun, Y., M. Chen, Z. Cui, L. Contreras, and B. Zhao. 2020e. Development of ferrous-calcium silicate slag for the direct to blister copper-making process and the equilibria investigation. Metallurgical and Materials Transactions B 51B (3):973–84. doi:10.1007/s11663-020-01817-9.
  • Sun, Y., M. Chen, Z. Cui, L. Contreras, and B. Zhao. 2020f. Phase equilibria of ferrous-calcium silicate slags in the liquid/spinel/white metal/gas system for the copper converting process. Metallurgical and Materials Transactions B 51B (5):2012–20. doi:10.1007/s11663-020-01887-9.
  • Sun, Y., M. Chen, Z. Cui, L. Contreras, and B. Zhao. 2020g. Equilibria of iron silicate slags for continuous converting copper-making process based on phase transformations. Metallurgical and Materials Transactions B 51B (5):2039–45. doi:10.1007/s11663-020-01901-0.
  • Takeda, Y. (1992). Oxidic and sulfidic dissolution of copper in matte smelting slag. In: Proceedings of the 4th International Conference on Molten Slags and Fluxes, Sendai, ISIJ, pp. 584–89.
  • Wan, X., L. Shen, A. Jokilaakso, H. Eriç, and P. Taskinen. 2021. Experimental approach to matte-slag reactions in the flash smelting process. Mineral Processing and Extractive Metallurgy Review 42 (4):231–41. doi:10.1080/08827508.2020.1737801.
  • Wang, Q. M., S. S. Wang, M. Tian, D. X. Tang, Q. H. Tian, and X. Y. Guo. 2019. Relationship between copper content of slag and matte in the SKS copper smelting process. International Journal of Minerals, Metallurgy and Materials 26 (3):301–08. doi:10.1007/s12613-019-1738-4.
  • Yazawa, A. 1974. Thermodynamic considerations of copper smelting. Canadian Metallurgical Quarterly 13 (3):443–53. doi:10.1179/cmq.1974.13.3.443.
  • Yazawa, A. 2000. Effects of oxygen pressure, Al2O3 and MgO on the liquidus surface of FeOx-SiO2-CaO system. Tetsu-to-hagané 86 (7):431–40. doi:10.2355/tetsutohagane1955.86.7_431.