6,064
Views
6
CrossRef citations to date
0
Altmetric
Review

Bioleaching for Recovery of Metals from Spent Batteries – A Review

, ORCID Icon, & ORCID Icon

References

  • Asadi, M., M. R. T. Mohammadi, F. Moosakazemi, M. J. Esmaeili, and M. Zakeri. 2018. Development of an environmentally friendly flowsheet to produce acid grade fluorite concentrate. Journal of Cleaner Production 186:782–98. doi:10.1016/J.JCLEPRO.2018.03.118.
  • Asadi Dalini, E., G. Karimi, S. Zandevakili, and M. Goodarzi. 2021. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (7):451–72. doi:10.1080/08827508.2020.1781628.
  • Asghari, I., S. M. Mousavi, F. Amiri, and S. Tavassoli. 2013. Bioleaching of spent refinery catalysts: A review. Journal of Industrial and Engineering Chemistry 19 (4):1069–81. doi:10.1016/J.JIEC.2012.12.005.
  • Bahaloo-Horeh, N., and S. M. Mousavi. 2017. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Management 60:666–79. doi:10.1016/j.wasman.2016.10.034.
  • Bajpai, P., and V. Dash. 2012. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews 16 (5):2926–39. doi:10.1016/J.RSER.2012.02.009.
  • Bal, B., S. Ghosh, and A. P. Das. 2019. Microbial recovery and recycling of manganese waste and their future application: A review. Geomicrobiology Journal 36 (1):85–96. doi:10.1080/01490451.2018.1497731.
  • Ballester, A., F. González, M. L. Blázquez, and J. L. Mier. 1990. The influence of various ions in the bioleaching of metal sulphides. Hydrometallurgy 23 (2–3):221–35. doi:10.1016/0304-386X(90)90006-N.
  • Ballester, A., F. González, M. L. Blázquez, C. Gómez, and J. L. Mier. 1992. The use of catalytic ions in bioleaching. Hydrometallurgy 29 (1–3):145–60. doi:10.1016/0304-386X(92)90010-W.
  • Belardi, G., R. Lavecchia, F. Medici, and L. Piga. 2012. Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries. Waste Management 32 (10):1945–51. doi:10.1016/J.WASMAN.2012.05.008.
  • Bernardes, A., D. C. Espinosa, and J. A. Tenório. 2004. Recycling of batteries: A review of current processes and technologies. Journal of Power Sources 130 (1–2):291–98. doi:10.1016/J.JPOWSOUR.2003.12.026.
  • Borja, D., K. A. Nguyen, R. A. Silva, J. H. Park, V. Gupta, Y. Han, Y. Lee, and H. Kim. 2016. Experiences and future challenges of bioleaching research in South Korea. Minerals 6 (4):128. doi:10.3390/min6040128.
  • Boxall, N. J., K. Y. Cheng, W. Bruckard, and A. H. Kaksonen. 2018. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. Journal of Hazardous Materials 360:504–11. doi:10.1016/j.jhazmat.2018.08.024.
  • Brandl, H., R. Bosshard, and M. Wegmann. 2001. Computer-Munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59 (2–3):319–26. doi:10.1016/S0304-386X(00)00188-2.
  • Calin, L., A. Catinean, M. Bilici, and A. Samuila. 2021. A corona-electrostatic technology for zinc and brass recovery from the coarse fraction of the recycling process of spent alkaline and zinc–carbon batteries. Journal of Cleaner Production 278:123477. doi:10.1016/j.jclepro.2020.123477.
  • Cerruti, C., G. Curutchet, and E. Donati. 1998. Bio-Dissolution of spent nickel–cadmium batteries using Thiobacillus ferrooxidans. Journal of Biotechnology 62 (3):209–19. doi:10.1016/S0168-1656(98)00065-0.
  • Chagnes, A., and B. Pospiech. 2013. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. Journal of Chemical Technology & Biotechnology 88 (7):1191–99. doi:10.1002/jctb.4053.
  • Chakankar, M., U. Jadhav, and H. Hocheng. 2017. Assessment of bio-hydrometallurgical metal recovery from Ni-Cd batteries. 115:539–45. doi:10.2991/eesed-16.2017.75.
  • Chandra, M., D. Yu, Q. Tian, and X. Guo. 2022. Recovery of cobalt from secondary resources: A comprehensive review. Mineral Processing and Extractive Metallurgy Review 43 (6):679–700. doi:10.1080/08827508.2021.1916927.
  • Chen, L., L. Huang, C. Méndez-García, J. Kuang, Z. Hua, J. Liu, and W. Shu. 2016. Microbial communities, processes and functions in acid mine drainage ecosystems. Current Opinion in Biotechnology 38:150–58. doi:10.1016/j.copbio.2016.01.013.
  • Dewulf, J., G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, and K. Vandeputte. 2010. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resources, Conservation and Recycling 54 (4):229–34. doi:10.1016/J.RESCONREC.2009.08.004.
  • Dey, S., G. C. Dhal, D. Mohan, and R. Prasad. 2018. Synthesis and characterization of AgCoo2 catalyst for oxidation of CO at a low temperature. Polyhedron 155:102–13. doi:10.1016/j.poly.2018.08.027.
  • Dzombak, D., and F. M. M. Morel. 1986. Sorption of cadmium on hydrous ferric oxide at high sorbate/sorbent ratios: Equilibrium, kinetics, and modeling. Journal of Colloid and Interface Science 112 (2):588–98. doi:10.1016/0021-9797(86)90130-X.
  • Ellis, B. L., K. T. Lee, and L. F. Nazar. 2010. Positive electrode materials for Li-ion and libatteries. Chemistry of Materials 23 (3):691–714. doi:10.1021/cm902696j.
  • Escudero, M. E., F. González, M. L. Blázquez, A. Ballester, and C. Gómez. 1993. The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide. Hydrometallurgy 34 (2):151–69. doi:10.1016/0304-386X(93)90032-9.
  • Esmaeili, M., S. O. Rastegar, R. Beigzadeh, and T. Gu. 2020. Ultrasound-Assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere 254:126670. doi:10.1016/j.chemosphere.2020.126670.
  • Espinosa, D. C. R., A. M. Bernardes, and J. A. S. Tenório. 2004. An overview on the current processes for the recycling of batteries. Journal of Power Sources 135:311–19. doi:10.1016/J.JPOWSOUR.2004.03.083.
  • Fergus, J. W. 2010. Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 195 (4):939–54. doi:10.1016/J.JPOWSOUR.2009.08.089.
  • Fröhlich, S., and D. Sewing. 1995. The BATENUS process for recycling mixed battery waste. Journal of Power Sources 57 (1–2):27–30. doi:10.1016/0378-7753(95)02234-1.
  • Ghassa, S., Z. Boruomand, M. Moradian, H. Abdollahi, and A. Akcil. 2015. Microbial dissolution of Zn-Pb sulfide minerals using mesophilic iron and sulfur-oxidizing acidophiles. Mineral Processing and Extractive Metallurgy Review 36 (2):112–22. doi:10.1080/08827508.2014.898302.
  • Ghassa, S., M. Noaparast, S. Z. Shafaei, H. Abdollahi, M. Gharabaghi, and Z. Boruomand. 2017. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy 171. doi:10.1016/j.hydromet.2017.06.012.
  • Ghassa, S., A. Farzanegan, M. Gharabaghi, and H. Abdollahi. 2020a. The reductive leaching of waste lithium ion batteries in presence of iron ions: Process optimization and kinetics modelling. Journal of Cleaner Production 262:121312. doi:10.1016/j.jclepro.202s0.121312.
  • Ghassa, S., A. Farzanegan, M. Gharabaghi, and H. Abdollahi. 2020b. Novel bioleaching of waste lithium ion batteries by mixed moderate thermophilic microorganisms, using iron scrap as energy source and reducing agent. Hydrometallurgy 197:105465. doi:10.1016/j.hydromet.2020.105465.
  • Ghassa, S., A. Farzanegan, M. Gharabaghi, and H. Abdollahi. 2021. Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: An environmentally friendly method to treating waste with waste. Resources, Conservation and Recycling 166:105348. doi:10.1016/j.resconrec.2020.105348.
  • Golmohammadzadeh, R., F. Faraji, and F. Rashchi. 2018. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling 136:418–35. doi:10.1016/j.resconrec.2018.04.024.
  • Guo, P., G. Zhang, J. Cao, Y. Li, Z. Fang, and C. Yang. 2011. Catalytic effect of Ag+ and Cu2+ on leaching realgar (As2s2). Hydrometallurgy 106 (1–2):99–103. doi:10.1016/J.HYDROMET.2010.12.006.
  • Heydarian, A., S. M. Mousavi, F. Vakilchap, and M. Baniasadi. (2018). Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. Journal of Power Sources, 378 19–30. 10.1016/j.jpowsour.2017.12.009
  • Horeh, N. B., S. M. Mousavi, and S. A. Shojaosadati. 2016. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. Journal of Power Sources 320:257–66. doi:10.1016/J.JPOWSOUR.2016.04.104.
  • Hu, X., A. Robles, T. Vikström, P. Väänänen, M. Zackrisson, and G. Ye. 2021. A novel process on the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries. Journal of Hazardous Materials 411:124928. doi:10.1016/j.jhazmat.2020.124928.
  • Huang, B., Z. Pan, X. Su, and L. An. 2018. Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources 399:274–86. doi:10.1016/j.jpowsour.2018.07.116.
  • Ijadi Bajestani, M., S. M. Mousavi, and S. A. Shojaosadati. 2014a. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization. Separation and Purification Technology 132:309–16. doi:10.1016/J.SEPPUR.2014.05.023.
  • Ijadi Bajestani, M., S. M. Mousavi, and S. A. Shojaosadati. 2014b. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization. Separation and Purification Technology 132:309–16. doi:10.1016/j.seppur.2014.05.023.
  • Iwase, K., K. Sakaki, J. Matsuda, Y. Nakamura, T. Ishigaki, and E. Akiba. 2011. Synthesis and crystal structure of a Pr 5 Ni 19 superlattice alloy and Its hydrogen absorption–Desorption property. Inorganic Chemistry 50 (10):4548–52. doi:10.1021/ic200253w.
  • Karaffa, L., E. Sándor, and E. Fekete. 2001. The biochemistry of citric acid of accumulation by aspergillus niger (A review). Acta Microbiologica Et Immunologica Hungarica 48 (3–4):429–40. doi:10.1556/AMicr.48.2001.3-4.11.
  • Kim, M.-J., J.-Y. Seo, Y.-S. Choi, and G.-H. Kim. 2016. Bioleaching of spent Zn–Mn or Ni–Cd batteries by aspergillus species. Waste Management 51:168–73. doi:10.1016/J.WASMAN.2015.11.001.
  • King, S., and N. J. Boxall. 2019. Lithium battery recycling in Australia: Defining the status and identifying opportunities for the development of a new industry. Journal of Cleaner Production 215:1279–87. doi:10.1016/J.JCLEPRO.2019.01.178.
  • Klaus, S.-R. 2018. How batteries store and release energy: explaining basic electrochemistry. Journal of Chemical Education 95 (10):1801–10. doi:10.1021/acs.jchemed.8b00479.
  • Lannoo, S., A. Vilas-Boas, S. M. Sadeghi, J. Jesus, and H. M. V. M. Soares. 2019. An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries. Journal of Cleaner Production 236:117612. doi:10.1016/j.jclepro.2019.117612.
  • Le, M. N., and M. S. Lee. 2021. A review on hydrometallurgical processes for the recovery of valuable metals from spent catalysts and life cycle analysis perspective. Mineral Processing and Extractive Metallurgy Review 42 (5):335–54. doi:10.1080/08827508.2020.1726914.
  • Li, L., J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu. 2010. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials 176 (1–3):288–93. doi:10.1016/J.JHAZMAT.2009.11.026.
  • Liu, C., J. Lin, H. Cao, Y. Zhang, and Z. Sun. 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production 228:801–13. doi:10.1016/J.JCLEPRO.2019.04.304.
  • Lobos, A. 2017. Bioleaching potential of filamentous fungi to mobilize lithium and cobalt from spent rechargeable Li-Ion batteries. USF Tampa Graduate Theses and Dissertations.
  • Lopez, S., O. Akizu-Gardoki, and E. Lizundia. 2021. Comparative life cycle assessment of high performance lithium-sulfur battery cathodes. Journal of Cleaner Production 282:124528. doi:10.1016/j.jclepro.2020.124528.
  • Mahandra, H., R. Singh, and B. Gupta. 2018. Recycling of Zn-C and Ni-Cd spent batteries using cyphos IL 104 via hydrometallurgical route. Journal of Cleaner Production 172:133–42. doi:10.1016/j.jclepro.2017.10.129.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2021. Review of lithium production and recovery from minerals, brines, and lithium-Ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (2):123–41. doi:10.1080/08827508.2019.1668387.
  • Meshram, P., Abhilash, and B.D. Pandey. 2019. Advanced review on extraction of nickel from primary and secondary sources. Mineral Processing and Extractive Metallurgy Review 40 (3):157–93. doi:10.1080/08827508.2018.1514300.
  • Mishra, D., D.-J. Kim, D. E. Ralph, J.-G. Ahn, and Y.-H. Rhee. 2008. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management 28 (2):333–38. doi:10.1016/J.WASMAN.2007.01.010.
  • Moazzam, P., Y. Boroumand, P. Rabiei, S. S. Baghbaderani, P. Mokarian, F. Mohagheghian, L. J. Mohammed, and A. Razmjou. 2021. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere 277:130196. doi:10.1016/j.chemosphere.2021.130196.
  • Mocellin, J., G. Mercier, J. L. Morel, P. Charbonnier, J. F. Blais, and M. O. Simonnot. 2017. Recovery of zinc and manganese from pyrometallurgy sludge by hydrometallurgical processing. Journal of Cleaner Production 168:311–21. doi:10.1016/j.jclepro.2017.09.003.
  • Morioka, Y. 2001. State-Of-The-Art of alkaline rechargeable batteries. Journal of Power Sources 100 (1–2):107–16. doi:10.1016/S0378-7753(01)00888-6.
  • Muguerra, H., C. Colin, M. Anne, M.-H. Julien, and P. Strobel. 2008. Topotactic synthesis, structure and magnetic properties of a new hexagonal polytype of silver cobaltate(iii) AgCoo2+δ. Journal of Solid State Chemistry 181 (11):2883–88. doi:10.1016/j.jssc.2008.07.031.
  • Müller, T., and B. Friedrich. 2006. Development of a recycling process for nickel-metal hydride batteries. Journal of Power Sources 158 (2):1498–509. doi:10.1016/j.jpowsour.2005.10.046.
  • Niu, Z., Q. Huang, J. Wang, Y. Yang, B. Xin, and S. Chen. 2015. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%. Journal of Hazardous Materials 298:170–77. doi:10.1016/j.jhazmat.2015.05.038.
  • Niu, Z., Q. Huang, B. Xin, C. Qi, J. Hu, S. Chen, and Y. Li. 2016. Optimization of bioleaching conditions for metal removal from spent zinc-manganese batteries using response surface methodology. Journal of Chemical Technology & Biotechnology 91 (3):608–17. doi:10.1002/jctb.4611.
  • Ordoñez, J., E. J. Gago, and A. Girard. 2016. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews 60:195–205. doi:10.1016/J.RSER.2015.12.363.
  • Pathak, A., R. Kothari, M. Vinoba, N. Habibi, and V. V. Tyagi. 2021. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. Journal of Environmental Management 280:111789. doi:10.1016/j.jenvman.2020.111789.
  • Pollmann, K., S. Kutschke, S. Matys, S. Kostudis, S. Hopfe, and J. Raff. 2016. Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals 6 (2):54. doi:10.3390/min6020054.
  • Provazi, K., B. A. Campos, D. C. R. Espinosa, and J. A. S. Tenório. 2011. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Management 31 (1):59–64. doi:10.1016/J.WASMAN.2010.08.021.
  • Rezaei, H., S. Ziaedin Shafaei, H. Abdollahi, A. Shahidi, and S. Ghassa. 2022. A sustainable method for germanium, vanadium and lithium extraction from coal fly ash: Sodium salts roasting and organic acids leaching. Fuel 312:122844. doi:10.1016/j.fuel.2021.122844.
  • Rogulski, Z., and A. Czerwiński. 2006. Used batteries collection and recycling in Poland. Journal of Power Sources 159 (1):454–58. doi:10.1016/J.JPOWSOUR.2006.02.034.
  • Saneie, R., H. Abdollahi, S. Ghassa, D. Azizi, and S. Chehreh Chelgani. 2022. Recovery of copper and aluminum from spent lithium-Ion batteries by froth flotation: A sustainable approach. Journal of Sustainable Metallurgy 8 (1):386–97. doi:10.1007/s40831-022-00493-0.
  • Santhiya, D., and Y.-P. Ting. 2005. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology 116 (2):171–84. doi:10.1016/J.JBIOTEC.2004.10.011.
  • Sayer, J. A., and G. M. Gadd. 1997. Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycological Research 101 (6):653–61. doi:10.1017/S0953756296003140.
  • Sayilgan, E., T. Kukrer, G. Civelekoglu, F. Ferella, A. Akcil, F. Veglio, and M. Kitis. 2009. A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy 97 (3–4):158–66. doi:10.1016/J.HYDROMET.2009.02.008.
  • Sayilgan, E., T. Kukrer, N. O. Yigit, G. Civelekoglu, and M. Kitis. 2010. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants. Journal of Hazardous Materials 173 (1–3):137–43. doi:10.1016/J.JHAZMAT.2009.08.063.
  • Shah, S. S., M. C. Palmieri, S. R. P. Sponchiado, and D. Bevilaqua. 2020. Environmentally sustainable and cost-effective bioleaching of aluminum from low-grade bauxite ore using marine-derived Aspergillus niger. Hydrometallurgy 195:105368. doi:10.1016/j.hydromet.2020.105368.
  • Shi, J.-J., Y. Shi, Y.-L. Feng, Q. Li, W.-Q. Chen, W.-J. Zhang, and H.-Q. Li. 2019. Anthropogenic cadmium cycles and emissions in Mainland China 1990–2015. Journal of Cleaner Production 230:1256–65. doi:10.1016/j.jclepro.2019.05.166.
  • Song, Y., Q. Huang, Z. Niu, J. Ma, B. Xin, S. Chen, J. Dai, and R. Wang. 2015. Preparation of Zn–Mn ferrite from spent Zn–Mn batteries using a novel multi-step process of bioleaching and co-precipitation and boiling reflux. Hydrometallurgy 153:66–73. doi:10.1016/J.HYDROMET.2015.02.007.
  • Soria, M. L., J. Chacón, J. C. Hernández, D. Moreno, and A. Ojeda. 2001. Nickel metal hydride batteries for high power applications. Journal of Power Sources 96 (1):68–75. doi:10.1016/S0378-7753(00)00677-7.
  • Sun, M., Y. Wang, J. Hong, J. Dai, R. Wang, Z. Niu, and B. Xin. 2016. Life cycle assessment of a bio-hydrometallurgical treatment of spent Zn-Mn batteries. Journal of Cleaner Production 129:350–58. doi:10.1016/j.jclepro.2016.04.058.
  • Tanong, K., L.-H. Tran, G. Mercier, and J.-F. Blais. 2017. Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. Journal of Cleaner Production 148:233–44. doi:10.1016/j.jclepro.2017.01.158.
  • Wang, J., B. Tian, Y. Bao, C. Qian, Y. Yang, T. Niu, and B. Xin. 2018. Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixcoymn1-x-yO2 Li-ion batteries. Journal of Hazardous Materials 354:250–57. doi:10.1016/j.jhazmat.2018.05.009.
  • Wu, W., X. Liu, X. Zhang, X. Li, Y. Qiu, M. Zhu, and W. Tan. 2019. Mechanism underlying the bioleaching process of LiCoo2 by sulfur-oxidizing and iron-oxidizing bacteria. Journal of Bioscience and Bioengineering 128 (3):344–54. doi:10.1016/J.JBIOSC.2019.03.007.
  • Xin, B., W. Jiang, H. Aslam, K. Zhang, C. Liu, R. Wang, and Y. Wang. 2012. Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresource Technology 106:147–53. doi:10.1016/j.biortech.2011.12.013.
  • Xin, Y., X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin. 2016. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. Journal of Cleaner Production 116:249–58. doi:10.1016/J.JCLEPRO.2016.01.001.
  • Yun, L., D. Linh, L. Shui, X. Peng, A. Garg, M. L. P. LE, S. Asghari, and J. Sandoval. 2018. Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resources, Conservation and Recycling 136:198–208. doi:10.1016/j.resconrec.2018.04.025.
  • Zeng, G., X. Deng, S. Luo, X. Luo, and J. Zou. 2012. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. Journal of Hazardous Materials 199-200:164–69. doi:10.1016/j.jhazmat.2011.10.063.
  • Zeng, G., S. Luo, X. Deng, L. Li, and C. Au. 2013. Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Minerals Engineering 49:40–44. doi:10.1016/J.MINENG.2013.04.021.
  • Zeng, X., J. Li, and N. Singh. 2014. Recycling of spent lithium-ion battery: A critical review. Critical Reviews in Environmental Science and Technology 44 (10):1129–65. doi:10.1080/10643389.2013.763578.
  • Zhao, L., L. Wang, D. Yang, and N. Zhu. 2007. Bioleaching of spent Ni-Cd batteries and phylogenetic analysis of an acidophilic strain in acidified sludge. Frontiers of Environmental Science & Engineering in China 1 (4):459–65. doi:10.1007/s11783-007-0073-6.
  • Zhao, L., D. Yang, and N. W. Zhu. 2008. Bioleaching of spent Ni–Cd batteries by continuous flow system: Effect of hydraulic retention time and process load. Journal of Hazardous Materials 160 (2–3):648–54. doi:10.1016/j.jhazmat.2008.03.048.
  • Zheng, X., Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, and Z. Sun. 2018. A mini-review on metal recycling from spent lithium Ion batteries. Engineering 4 (3):361–70. doi:10.1016/j.eng.2018.05.018.
  • Zhu, N., L. Zhang, C. Li, and C. Cai. 2003. Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Management 23 (8):703–08. doi:10.1016/S0956-053X(03)00068-0.