192
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Enhanced flotation of Pb(II)-activated wolframite using a novel collector

, , &

References

  • Ai, G., W. Huang, X. Yang, and X. Li. 2017. Effect of collector and depressant on monomineralic surfaces in fine wolframite flotation system. Separation and Purification Technology 176:59–65. doi:10.1016/j.seppur.2016.11.064.
  • Bera, P., C. Kim, and S. I. Seok. 2009. Synthesis, spectroscopy and thermal behavior of new lead(II) complexes derived from S-methyl/benzyldithiocarbazates (SMDTC/SBDTC): X-ray crystal structure of [Pb(SMDTC)(NO3)2]. Inorganica Chimica Acta 362 (8):2603–08. doi:10.1016/j.ica.2008.11.027.
  • Biesinger, M. C., B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart. 2011. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science 257 (7):2717–30. doi:10.1016/j.apsusc.2010.10.051.
  • Bond, A. M., R. Colton, and A. F. Hollenkamp. 1990. Lead-207 NMR, mass spectrometric, and electrochemical studies on labile lead(II) dithiocarbamate complexes: Formation of mixed mercury-lead complexes at a mercury electrode in dichloromethane solution. Inorganic Chemistry 29 (10):1991–95. doi:10.1021/ic00335a043.
  • Cao, X., Y. Chen, S. Jiao, Z. Fang, M. Xu, X. Liu, L. Li, G. Pang, and S. Feng. 2014. Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 6 (21):12366–70. doi:10.1039/c4nr03729d.
  • Cui, Y., F. Jiao, W. Qin, L. Dong, and X. Wang. 2020. Synergistic depression mechanism of zinc sulfate and sodium dimethyl dithiocarbamate on sphalerite in Pb−Zn flotation system. The Transactions of Nonferrous Metals Society of China 30 (9):2547–55. doi:10.1016/S1003-6326(20)65400-0.
  • Deng, L., H. Zhong, S. Wang, and G. Liu. 2015. A novel surfactant N-(6-(hydroxyamino)-6-oxohexyl)octanamide: synthesis and flotation mechanisms to wolframite. Separation Purification Technology 145:8–16. doi:10.1016/j.seppur.2015.02.029.
  • Habashi, F. 2008. Historical introduction to refractory metals. Mineral Processing and Extractive Metallurgy Review 22 (1):25–53. doi:10.1080/08827509808962488.
  • Han, H., W. Liu, Y. Hu, W. Sun, and X. Li. 2017. A novel flotation scheme: selective flotation of tungsten minerals from calcium minerals using Pb–BHA complexes in Shizhuyuan. Rare Metals 36 (6):533–40. doi:10.1007/s12598-017-0907-8.
  • Hu, Y., D. Wang, and Z. Xu. 1997. A study of interactions and flotation of wolframite with octyl hydroxamate. Minerals Engineering 10 (6):623–33. doi:10.1016/S0892-6875(97)00041-1.
  • Huang, Y., X. Niu, G. Liu, and J. Liu. 2019. Novel chelating surfactant 5-heptyl-1,2,4-triazole-3-thione: its synthesis and flotation separation of malachite against quartz and calcite. Minerals Engineering 131:342–52. doi:10.1016/j.mineng.2018.11.036.
  • Ilhan, S., A. O. Kalpakli, C. Kahruman, and I. Yusufoglu. 2013. The investigation of dissolution behavior of gangue materials during the dissolution of scheelite concentrate in oxalic acid solution. Hydrometallurgy 136:15–26. doi:10.1016/j.hydromet.2013.02.013.
  • Ilton, E. S., J. E. Post, P. J. Heaney, F. T. Ling, and S. N. Kerisit. 2016. XPS determination of Mn oxidation states in Mn (hydr)oxides. Applied Surface Science 366:475–85. doi:10.1016/j.apsusc.2015.12.159.
  • Kupka, N., and M. Rudolph. 2018. Froth flotation of scheelite – a review. International Journal of Mining Science and Technology 28 (3):373–84. doi:10.1016/j.ijmst.2017.12.001.
  • Liu, S., G. Liu, H. Zhong, and X. Yang. 2017. The role of HABTC’s hydroxamate and dithiocarbamate groups in chalcopyrite flotation. Journal of Industrial and Engineering Chemistry 52:359–68. doi:10.1016/j.jiec.2017.04.015.
  • Liu, C., W. Zhang, S. Song, and H. Li. 2019. Study on the activation mechanism of lead ions in wolframite flotation using benzyl hydroxamic acid as the collector. Minerals Engineering 141:105859. doi:10.1016/j.mineng.2019.105859.
  • Liu, S., L. Xie, J. Liu, G. Liu, H. Zhong, Y. Wang, and H. Zeng. 2019. Probing the interactions of hydroxamic acid and mineral surfaces: molecular mechanism underlying the selective separation. Chemical Engineering Journal 374:123–32. doi:10.1016/j.cej.2019.05.152.
  • Liu, S., J. Liu, G. Liu, Y. Liu, and H. Zhong. 2020. Modulation of the morphology, surface energy and wettability of malachite through a S,O,O-ligand surfactant: mechanism and hydrophobization. Applied Surface Science 505:144467. doi:10.1016/j.apsusc.2019.144467.
  • Liu, S., Y. Dong, L. Xie, G. Liu, H. Zhong, and H. Zeng. 2021. Uncovering the hydrophobic mechanism of a novel dithiocarbamate-hydroxamate surfactant towards galena. Chemical Engineering Science 245:116765. doi:10.1016/j.ces.2021.116765.
  • Lu, Y., S. Wang, and H. Zhong. 2021a. New insights into separating wolframite from calcium bearing minerals by flotation. Journal of Industrial and Engineering Chemistry 97:549–59. doi:10.1016/j.jiec.2021.03.014.
  • Lu, Y., S. Wang, and H. Zhong. 2021b. Study on the role of a hydroxamic acid derivative in wolframite flotation: selective separation and adsorption mechanism. Applied Surface Science 550:149223. doi:10.1016/j.apsusc.2021.149223.
  • Marinakis, K. I., and G. H. Kelsall. 1985. Adsorption of dodecyl sulfate and decyl phosphonate on wolframite, (Fe, Mn)WO4, and their use in the two-liquid flotation of fine wolframite particles. Journal of Colloid Interface Science 2:518–31. doi:10.1016/S0021-9797(85)80027-8.
  • Martins, J. I., and M. M. Amarante. 2013. Scheelite flotation from tarouca mine ores. Mineral Processing and Extractive Metallurgy Review 34 (6):367–86. doi:10.1080/08827508.2012.657022.
  • Martins, J. I. 2014. Leaching systems of wolframite and scheelite: a thermodynamic approach. Mineral Processing and Extractive Metallurgy Review 35 (1):23–43. doi:10.1080/08827508.2012.757095.
  • Medvedev, A. S., B. G. Korshunov, and N. N. Khavskii. 1995. Physical intensification methods for mineral raw materials leaching. Mineral Processing and Extractive Metallurgy Review 15 (1):48–49. doi:10.1080/08827509508936952.
  • Meng, Q., Q. Feng, Q. Shi, and L. Ou. 2015. Studies on interaction mechanism of fine wolframite with octyl hydroxamic acid. Minerals Engineering 79:133–38. doi:10.1016/j.mineng.2015.05.015.
  • Meng, Q., Q. Feng, and L. Ou. 2017. Recovery Enhancement of ultrafine wolframite through hydrophobic flocs magnetic separation. Mineral Processing and Extractive Metallurgy Review 38 (5):298–303. doi:10.1080/08827508.2017.1323749.
  • Meng, Q., Z. Yuan, L. Li, J. Lu, and J. Yang. 2020. Modification mechanism of lead ions and its response to wolframite flotation using salicylhydroxamic acid. Powder Technology 366:477–87. doi:10.1016/j.powtec.2020.02.049.
  • Pandey, B. D., V. Kumar, D. Bagchi, and R. K. J. Premchand. 2001. Processing of tungsten preconcentrate from low grade ore to recover metallic values. Mineral Processing and Extractive Metallurgy Review 22:101–20. doi:10.1080/08827509808962491.
  • Parr, J. 1997. Some recent coordination chemistry of lead(II). Polyhedron 16 (4):551–66. doi:10.1016/0277-5387(96)00243-4.
  • Qi, J., G. Liu, and Y. Dong. 2020. Probing the hydrophobic mechanism of N-[(3-hydroxyamino)-propoxy]-N-octyl dithiocarbamate toward bastnaesite flotation by in situ AFM, FTIR and XPS. Journal of Colloid and Interface Science 572:179–89. doi:10.1016/j.jcis.2020.03.080.
  • Qi, J., Y. Dong, S. Liu, and G. Liu. 2021. A selective flotation of cassiterite with a dithiocarbamate-hydroxamate molecule and its adsorption mechanism. Applied Surface Science 538:147996. doi:10.1016/j.apsusc.2020.147996.
  • Qi, J., G. Zhao, S. Liu, W. Chen, and G. Liu. 2022. Strengthening flotation enrichment of Pb(II)-activated scheelite with N-[(3-hydroxyamino)-propoxy]-N-hexyl dithiocarbamate. Journal of Industrial and Engineering Chemistry. doi:10.1016/j.jiec.2022.07.024.
  • Sreenivas, T., K. Srinivas, R. Natarajan, and N. P. H. Padmanabhan. 2004. An integrated process for the recovery of tungsten and tin from a combined wolframite–scheelite–cassiterite concentrate. Mineral Processing and Extractive Metallurgy Review 25 (3):193–203. doi:10.1080/08827500490441332.
  • Sun, Q., X. Ma, Y. Lu, S. Wang, and H. Zhong. 2021. Insights into the selective adsorption mechanism of a multifunctional thioether-containing hydroxamic acid on separation of wolframite from fluorite. Powder Technology 380:421–29. doi:10.1016/j.powtec.2020.11.014.
  • Suri, A. K. 2001. Processing of secondary sources of refractory metals. Mineral Processing and Extractive Metallurgy Review 22 (1):287–302. doi:10.1080/08827509808962503.
  • Wei, Z., Y. Hu, H. Han, and W. Sun. 2020. Configurations of lead(ii)-benzohydroxamic acid complexes in colloid. Journal of Colloid and Interface Science 562:342–51. doi:10.1016/j.jcis.2019.11.115.
  • Yamashita, T., and P. Hayes. 2008. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science 254 (8):2441–49. doi:10.1016/j.apsusc.2007.09.063.
  • Yang, S., T. Peng, H. Li, Q. Feng, and X. Qiu. 2016. Flotation mechanism of wolframite with varied components Fe/Mn. Mineral Processing and Extractive Metallurgy Review 37 (1):34–41. doi:10.1080/08827508.2015.1104505.
  • Yang, X. 2018. Beneficiation studies of tungsten ores-a review. Minerals Engineering 125:111–19. doi:10.1016/j.mineng.2018.06.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.