1,116
Views
5
CrossRef citations to date
0
Altmetric
Review

Review on the mineral processing in ionic liquids and deep eutectic solvents

&

References

  • Abaka-Wood, G. B., J. Addai-Mensah, and W. Skinner. 2017. A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors. International Journal of Mineral Processing 158:55–62. doi:10.1016/j.minpro.2016.11.012.
  • Abbott, A. P., A. Z. Al-Bassam, A. Goddard, R. C. Harris, G. R. Jenkin, F. J. Nisbet, and M. Wieland. 2017. Dissolution of pyrite and other Fe–S–As minerals using deep eutectic solvents. Green Chemistry 19 (9):2225–33. doi:10.1039/C7GC00334J.
  • Abbott, A. P., G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah. 2001. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications 19:2010–11. doi:10.1039/b106357j.
  • Abbott, A. P., G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah. 2003. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 1:70–71. doi:10.1039/b210714g.
  • Abbott, A. P., G. Frisch, J. Hartley, and K. S. Ryder. 2011. Processing of metals and metal oxides using ionic liquids. Green Chemistry 13 (3):471–81.
  • Aguirre, C. L., N. Toro, N. Carvajal, H. Watling, and C. Aguirre. 2016. Leaching of chalcopyrite (CuFeS2) with an imidazolium-based ionic liquid in the presence of chloride. Minerals Engineering 99:60–66. doi:10.1016/j.mineng.2016.09.016.
  • Al-Zubeidi, A., D. Godfrey, and T. Albrecht. 2018. Isentangling chemical effects in ionic-liquid-based cu leaching from chalcopyrite. Journal of Electroanalytical Chemistry 819:130–35. doi:10.1016/j.jelechem.2017.09.049.
  • Anggara, S., F. Bevan, R. C. Harris, J. M. Hartley, G. Frisch, G. R. Jenkin, and A. P. Abbott. 2019. Direct extraction of copper from copper sulfide minerals using deep eutectic solvents. Green Chemistry 21 (23):6502–12. doi:10.1039/C9GC03213D.
  • Azevedo, A. M., S. A. Pereira, M. L. Passos, S. P. Costa, P. C. Pinto, A. R. Araujo, and M. L. M. Saraiva. 2017. Assessment of ionic liquids’ toxicity through the inhibition of acylase I activity on a microflow system. Chemosphere 173:351–58. doi:10.1016/j.chemosphere.2016.12.138.
  • Azizi, D., and F. Larachi. 2018. Immiscible dual ionic liquid-ionic liquid mineral separation of rare-earth minerals. Separation and Purification Technology 191:340–53. doi:10.1016/j.seppur.2017.09.061.
  • Azizi, D., F. Larachi, and M. Latifi. 2016. Ionic-Liquid collectors for rare-earth minerals flotation case of tetrabutylammonium bis (2-ethylhexyl)-phosphate for monazite and bastnäsite recovery. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 506:74–86. doi:10.1016/j.colsurfa.2016.06.011.
  • Azizi, D., A. Sarvaramini, and F. Larachi. 2017. Liquid-Liquid mineral separation via ionic-liquid complexation of monazite and bastnäsite—an alternate route for rare-earth mineral beneficiation. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 520:301–23. doi:10.1016/j.colsurfa.2017.01.079.
  • Bai C.Q., 2008, Application status and development of non-cyanide gold leaching reagents. Express Information of Mining Industry Chinese, 24 (12): 17–25.
  • Barton, I. F., and J. B. Hiskey. 2022. Chalcopyrite leaching in nove lixiviants. Hydrometallurgy 207:105775. doi:10.1016/j.hydromet.2021.105775.
  • Bastrzyk, A., and J. Feder-Kubis. 2018. Pyrrolidinium and morpholinium ionic liquids as a novel effective destabilising agent of mineral suspension. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 557:58–65. doi:10.1016/j.colsurfa.2018.05.002.
  • Beaulieu, J. J., J. L. Tank, and M. Kopacz. 2008. Sorption of imidazolium-based ionic liquids to aquatic sediments. Chemosphere 70 (7):1320–28. doi:10.1016/j.chemosphere.2007.07.046.
  • Berg, M., C. G. Arnold, S. R. Müller, J. Mühlemann, and R. P. Schwarzenbach. 2001. Sorption and desorption behavior of organotin compounds in sediment− pore water systems. Environmental Science Technology 35 (15):3151–57. doi:10.1021/es010010f.
  • Carlesi, C., E. Cortes, G. Dibernardi, J. Morales, and E. Muñoz. 2016. Ionic liquids as additives for acid leaching of copper from sulfidic ores. Hydrometallurgy 161:29–33. doi:10.1016/j.hydromet.2016.01.012.
  • Carlesi, C., R. C. Harris, A. P. Abbott, and G. R. Jenkin. 2022. Chemical dissolution of chalcopyrite concentrate in choline chloride ethylene glycol deep eutectic solvent. Minerals 12 (1):65–75. doi:10.3390/min12010065.
  • Chandra, M., D. Yu, Q. Tian, and X. Guo. 2022. Recovery of cobalt from secondary resources: A comprehensive review. Mineral Processing and Extractive Metallurgy Review 43 (6):679–700. doi:10.1080/08827508.2021.1916927.
  • Chen, W., Q. Feng, G. Zhang, C. Liu, and F. Meng. 2021. Utilization of pyrogallol in flotation separation of scheelite from calcite. Separation Science and Technology 56 (4):738–45. doi:10.1080/01496395.2017.1377249.
  • Cheng, Q., G. Mei, W. Xu, and Q. Yuan. 2022. Flotation of quartz using imidazole ionic liquid collectors with different counterions. Minerals Engineering 180:107491. doi:10.1016/j.mineng.2022.107491.
  • Chen, J., Y. Xu, Z. Zheng, Q. Wei, U. Farooq, T. Lu, and Z. Qi. 2022. The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 648:129422. doi:10.1016/j.colsurfa.2022.129422.
  • Davris, P., E. Balomenos, D. Panias, and I. Paspaliaris. 2014. Leaching of rare earths from bauxite residues using imidazolium based ionic liquids. ERES2014: 1st European Rare Earth Resources Conference, Milos, Greece, 241–52, September.
  • Davris, P., D. Marinos, and E. Balomenos. 2018. Leaching of rare earth elements from ‘Rödberg’ore of Fen carbonatite complex deposit, using the ionic liquid HbetTf2N. Hydrometallurgy 175:20–27. doi:10.1016/j.hydromet.2017.10.031.
  • Dedzo, G. K. 2019. Kaolinite clay mineral reactivity improvement through ionic liquid functionalization. Israel Journal of Chemistry 9 (9):778–88. doi:10.1002/ijch.201800130.
  • Deng, Y. Q. 2006. Ionic liquids: Properties, preparation and application, 20–45. Beijing: China SINO-PEC press.
  • Devi, N., and L. B. Sukla. 2019. Studies on liquid-liquid extraction of yttrium and separation from other rare earth elements using bifunctional ionic liquids. Mineral Processing and Extractive Metallurgy Review 40 (1):46–55. doi:10.1080/08827508.2018.1481058.
  • Dietz, M. L. 2006. Ionic liquids as extraction solvents: Where do we stand? Separation Science and Technology 41 (10):2047–63. doi:10.1080/01496390600743144.
  • Dong, T., Y. X. Hua, Q. Zhang, and D. Zhou. 2009. Leaching of chalcopyrite with Brønsted acidic ionic liquid. Hydrometallurgy 99 (1–2):33–38. doi:10.1016/j.hydromet.2009.06.001.
  • Dong, Z., D. Wen, M. Zhang, K. Xie, R. Hua, and L. Zhao. 2020. Recovery of rhenium (VII) from synthetic leaching solutions of uranium ore using ionic liquid modified cellulose microsphere adsorbents. Hydrometallurgy 197:105457. doi:10.1016/j.hydromet.2020.105457.
  • Dwamena, A. K. 2019. Recent advances in hydrophobic deep eutectic solvents for extraction. Separations 6 (1):9–12. doi:10.3390/separations6010009.
  • Eney de Matos, V., S. D. C. S. Nogueira, P. B. Kowalczuk, G. R. D. Silva, and A. E. C. Peres. 2022a. Differences in etheramines froth properties and the effects on iron ore flotation. Part I: Two-phase systems. Mineral Processing and Extractive Metallurgy Review 43 (2):209–16. doi:10.1080/08827508.2021.1875461.
  • Eney de Matos, V., S. D. C. S. Nogueira, G. Silva, P. B. Kowalczuk, and A. E. C. Peres. 2022b. Differences in etheramines froth properties and the effects on iron ore flotation. Part II: Three-phase systems. Mineral Processing and Extractive Metallurgy Review 43 (2):243–50. doi:10.1080/08827508.2021.1888725.
  • Engel, M., and B. Chefetz. 2016. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry. Environmental Pollution 213:90–98. doi:10.1016/j.envpol.2016.02.009.
  • Erust, C., A. Akcil, A. Tuncuk, H. Deveci, and E. Y. Yazici. 2021. A multi-stage process for recovery of neodymium (Nd) and dysprosium (Dy) from spent hard disc drives (HDDs). Mineral Processing and Extractive Metallurgy Review 42 (2):90–101. doi:10.1080/08827508.2019.1692010.
  • Erust, C., M. K. Karacahan, and T. Uysal. 2022. Hydrometallurgical roadmaps and future strategies for recovery of rare earth elements. Mineral Processing and Extractive Metallurgy Review 1–15. doi:10.1080/08827508.2022.2073591.
  • Fang, X. H., X. Tong, M. Q. Zhon, and W. L. Chen. 2014b. Intensification of silver leaching process by [Bmim]HSO4 from silver powder and silver sulfide with Thiourea. Chinese Journal of Rare Metals 38 (3):464–70.
  • Fang, X. H., M. Q. Zhong, Y. F. Yin, S. Zhang, and D. J. Chen. 2014a. Leaching behaviors of silver concentrate in [bmim]HSO4 ionic liquids and thiourea solution. Nonferrous Metals (Extractive Metallurgy) 5:38–41.
  • Freiderich, J. W., J. J. Stankovich, H. Luo, S. Dai, and B. A. Moyer. 2015. Dissolution of the rare-earth mineral bastnaesite by acidic amide ionic liquid for recovery of critical materials. European Journal of Inorganic Chemistry 2015 (26):4354–61. doi:10.1002/ejic.201500509.
  • Fu, Q. L., J. Z. He, L. Blaney, and D. M. Zhou. 2016. Sorption of roxarsone onto soils with different physicochemical properties. Chemosphere 59:103–12. doi:10.1016/j.chemosphere.2016.05.081.
  • González, Y., L. Ayala, and C. Escobar. 2020. Chalcopyrite leaching with ionic liquid based on imidazolium, chloride and pyrite in an oxygenated medium[c]//aip Conference Proceedings. AIP Publishing LLC 2281 (1):020010.
  • Gorman-Lewis, D. J., and J. B. Fein. 2004. Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces. Environmental Science Technology 38 (8):2491–95. doi:10.1021/es0350841.
  • Haerens, K., E. Matthijs, A. Chmielarz, and B. Van der Bruggen. 2009. The use of ionic liquids based on choline chloride for metal deposition: A green alternative? Journal of Environmental Management 90 (11):3245–52. doi:10.1016/j.jenvman.2009.04.013.
  • Hartley, J. M., A. Z. Al-Bassam, R. C. Harris, G. Frisch, G. R. Jenkin, and A. P. Abbott. 2020. Investigating the dissolution of iron sulfide and arsenide minerals in deep eutectic solvents. Hydrometallurgy 198:105511. doi:10.1016/j.hydromet.2020.105511.
  • He, M. C. 2017. Research report on development strategy of metallurgy and mining discipline (2016-2020). Beijing, China: Science Press.
  • He J., Tong X., Cui Y.Q., 2004, Current situation of silver leaching technology research. Yunnan Metallurgy Chinese ,10 (5):6–13.
  • Hu, Y. H. 2014. Mineral floatation. Changsha, China: Central South University Press Co., Ltd.
  • Hu, J. X., G. C. Tian, F. T. Zi, and X. Hu. 2017. Leaching of chalcopyrite with hydrogen peroxide in 1-hexyl-3-methyl-imidazolium hydrogen sulfate ionic liquid aqueous solution. Hydrometallurgy 169:1–8. doi:10.1016/j.hydromet.2016.12.001.
  • Hu, J. X., F. T. Zi, and G. C. Tian. 2021. Extraction of copper from chalcopyrite with potassium dichromate in 1-ethyl-3-methylimidazolium hydrogen sulfate ionic liquid aqueous solution. Minerals Engineering 172:107179. doi:10.1016/j.mineng.2021.107179.
  • Jafari, M., S. Z. Shafaie, H. Abdollahi, and A. Entezari-Zarandi. 2022. A green approach for selective ionometallurgical separation of lithium from spent li-ion batteries by deep eutectic solvent (DES): Process optimization and kinetics modeling. Mineral Processing and Extractive Metallurgy Review 1–13. doi:10.1080/08827508.2022.2042282.
  • Jdid, E. A., R. Hakkou, P. Blazy, and K. Elamari. 1995. Silver recycling from photographic bleach-fix baths by ionic flotation and thermal decomposition and reuse of the baths. Separation Science and Technology 30 (10):2211–21. doi:10.1080/01496399508013902.
  • Jenkin, G. R., A. Z. Al-Bassam, R. C. Harris, A. P. Abbott, D. J. Smith, D. A. Holwell, and C. J. Stanley. 2016. The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Minerals Engineering 87:18–24. doi:10.1016/j.mineng.2015.09.026.
  • Jordens, A., Y. P. Cheng, and K. E. Waters. 2013. A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering 41:97–114. doi:10.1016/j.mineng.2012.10.017.
  • Kowalczuk, P. B., M. Siedlarz, S. Szczerkowska, and M. Wojcik. 2018. Facile determination of foamability index of non-ionic and cationic frothers and its effect on flotation of quartz. Separation Science and Technology 53 (8):1198–206. doi:10.1080/01496395.2017.1293100.
  • Krishnamurthy, N., and C. K. Gupta. 2002. Rare earth metals and alloys by electrolytic methods. Mineral Processing and Extractive Metallurgy Review 22 (4–6):477–507. doi:10.1080/08827500208547426.
  • Krishnamurthy, N., and C. K. Gupta. 2016. Extractive metallurgy of rare earths. 2nd ed. Boca Raton, USA: CRC Press.
  • Kubota, F., Y. Baba, and M. Goto. 2012. Application of ionic liquids for the separation of rare earth metals. Solvent Extraction Research and Development 19:17–28. doi:10.15261/serdj.19.17.
  • Kuzmina, O., E. Symianakis, D. Godfrey, T. Albrecht, and T. Welton. 2017. Ionic liquids for metal extraction from chalcopyrite: Solid, liquid and gas phase studies. Physical Chemistry Chemical Physics 19 (32):21556–64. doi:10.1039/C7CP03540C.
  • Li, R. X. 2004. Green solvents: Synthesis and application of ionic liquids, 27–39. Beijing: Chemical Industry Engineering Press.
  • Li, R., C. Marion, E. R. L. Espiritu, R. Multani, X. Sun, and K. E. Waters. 2021. Investigating the use of an ionic liquid for rare earth mineral flotation. Journal of Rare Earths 39 (7):866–74. doi:10.1016/j.jre.2020.09.003.
  • Li, X., W. Monnens, Z. Li, J. Fransaer, and K. Binnemans. 2020b. Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals. Green Chemistry 22 (2):417–26. doi:10.1039/C9GC02983D.
  • Liu, Y., J. Chen, and D. Li. 2012. Application and perspective of ionic liquids on rare earths green separation. Separation Science and Technology 47 (2):223–32. doi:10.1080/01496395.2011.635171.
  • Li, F., Z. Xiao, J. Zeng, J. Chen, and X. Sun. 2020a. Recovery of REEs from leaching liquor of ion-adsorbed-type rare earths ores using ionic liquid based on cooking oil. Hydrometallurgy 196:105449. doi:10.1016/j.hydromet.2020.105449.
  • Markiewicz, M., C. Jungnickel, and H. P. H. Arp. 2013a. Ionic liquid assisted dissolution of dissolved organic matter and PAHs from soil below the critical micelle concentration. Environmental Science Technology 47 (13):6951–58. doi:10.1021/es304568w.
  • Markiewicz, M., W. Mrozik, K. Rezwan, J. Thöming, J. Hupka, and C. Jungnickel. 2013b. Changes in zeta potential of imidazolium ionic liquids modified minerals–implications for determining mechanism of adsorption. Chemosphere 90 (2):706–12. doi:10.1016/j.chemosphere.2012.09.053.
  • Matzke, M., K. Thiele, A. Müller, and J. Filser. 2009. Sorption and desorption of imidazolium based ionic liquids in different soil types. Chemosphere 74 (4):568–74. doi:10.1016/j.chemosphere.2008.09.049.
  • McCluskey, A., G. A. Lawrance, S. K. Leitch, et al. 2002. Ionic liquids and metal ions: From green chemistry to ore refining. In Ionic liquids: “Industrial applications to green chemistry”, ed. [C]//Rogers, R., Seddon, K. R., 199–204. Washington, DC: American Chemical Society.
  • Meindersma, G. W., A. Podt, M. B. Klaren, and A. B. De Haan. 2006. Separation of aromatic and aliphatic hydrocarbons with ionic liquids. Chemical Engineering Communications 193 (11):1384–96.
  • Meshram, P., and Abhilash. 2020. Recovery and recycling of cerium from primary and secondary resources-a critical review. Mineral Processing and Extractive Metallurgy Review 41 (4):279–310. doi:10.1080/08827508.2019.1677647.
  • Mrozik, W., C. Jungnickel, M. Skup, P. Urbaszek, and P. Stepnowski. 2008. Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite: Implications for their fate and transport in the soil environment. Environmental Chemistry 5 (4):299–306. doi:10.1071/EN08015.
  • Mrozik, W., A. Kotłowska, W. Kamysz, and P. Stepnowski. 2012. Sorption of ionic liquids onto soils: Experimental and chemometric studies. Chemosphere 88 (10):1202–07. doi:10.1016/j.chemosphere.2012.03.070.
  • Nguyen, T. H., and M. S. Lee. 2019. A review on separation of gallium and indium from leach liquors by solvent extraction and ion exchange. Mineral Processing and Extractive Metallurgy Review 40 (4):278–91. doi:10.1080/08827508.2018.1538987.
  • Park, J., Y. Jung, P. Kusumah, J. Lee, K. Kwon, and C. K. Lee. 2014. Application of ionic liquids in hydrometallurgy. International Journal of Molecular Sciences 15 (9):15320–43. doi:10.3390/ijms150915320.
  • Perna, F., M. Vitale, and P. Capriati. 2020. Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry 21:27–33. doi:10.1016/j.cogsc.2019.09.004.
  • Qiu, D. F., and L. Y. Chai. 2015. Nonferrous metallurgy and environmental protection. Changsha, China: Central South University Press.
  • Qiu, D. F., and C. Y. Wang. 2019. Progress of rare and precious metal metallurgy. Beijing, China: Metallurgical Industry Press.
  • Quijada-Maldonado, E., F. Olea, R. Sepúlveda, J. Castillo, R. Cabezas, G. Merlet, and J. Romero. 2020. Possibilities and challenges for ionic liquids in hydrometallurgy. Separation and Purification Technology 251:117289. doi:10.1016/j.seppur.2020.117289.
  • Reinert, L., K. Batouche, J. M. Lévêque, F. Muller, J. M. Bény, B. Kebabi, and L. Duclaux. 2012. Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite: Characterisation and thermodynamic calculations. Chemical Engineering Journal 209:13–19. doi:10.1016/j.cej.2012.07.128.
  • Richter J and Ruck M. (2020). Synthesis and Dissolution of Metal Oxides in Ionic Liquids and Deep Eutectic Solvents. Molecules, 25 (1): 78. doi:10.3390/molecules25010078.
  • Rodríguez, M., L. Ayala, C. Escobar, P. Hernández, R. Sepúlveda, and N. Toro. 2020b. Chalcopyrite leaching with ionic liquid based on imidazolium, chloride and pyrite. AIP Conference Proceedings, AIP Publishing LLC. 2281, 020012
  • Rodríguez, M., L. Ayala, P. Robles, R. Sepúlveda, D. Torres, F. R. Carrillo-Pedroza, and N. Toro. 2020a. Leaching chalcopyrite with an imidazolium-based ionic liquid and bromide. Metals 10 (2):183–87. doi:10.3390/met10020183.
  • Sahlabad, M. K., S. Javanshir, and M. Honarmand. 2022. Improvement in atmospheric leaching of chalcopyrite concentrate using a new environmentally-friendly ionic liquid. Hydrometallurgy 211:105893. doi:10.1016/j.hydromet.2022.105893.
  • Sahoo, H., S. S. Rath, and B. Das. 2014. Use of the ionic liquid-tricaprylmethyl ammonium salicylate (TOMAS) as a flotation collector of quartz. Separation and Purification Technology and Separation and Purification Technology 136:66–73. doi:10.1016/j.seppur.2014.08.034.
  • Sahoo, H., S. S. Rath, and B. Das. 2020. A review on the application of quaternary ammonium-based ionic liquids in mineral flotation. Mineral Processing and Extractive Metallurgy Review 41 (6):405–16. doi:10.1080/08827508.2019.1635472.
  • Sahoo, H., S. S. Rath, B. Das, and B. K. Mishra. 2016. Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths. Minerals Engineering 95:107–12. doi:10.1016/j.mineng.2016.06.024.
  • Sahoo, H., S. S. Rath, S. K. Jena, B. K. Mishra, and B. Das. 2015a. Aliquat-336 as a novel collector for quartz flotation. Advanced Powder Technology 26 (2):511–18. doi:10.1016/j.apt.2014.12.010.
  • Sahoo, H., N. Sinha, S. S. Rath, and B. Das. 2015b. Ionic liquids as novel quartz collectors: Insights from experiments and theory. Chemical Engineering Journal 273:46–54. doi:10.1016/j.cej.2015.03.050.
  • Shen, L., H. F. Wang, B. L. Guo, and H. Wang. 2016. The application of fatty acids emulsions in thermal coal reverse flotation. International Journal of Coal Preparation and Utilization 36 (3):163–73. doi:10.1080/19392699.2015.1069279.
  • Smith, E. L., A. P. Abbott, and K. S. Ryder. 2014. Deep eutectic solvents (DESs) and their applications. Chemical Reviews 114 (21):11060–82. doi:10.1021/cr300162p.
  • Studzińska, S., M. Sprynskyy, and B. Buszewski. 2008. Study of sorption kinetics of some ionic liquids on different soil types. Chemosphere 71 (11):2121–28. doi:10.1016/j.chemosphere.2008.01.013.
  • Suli, L. M., W. H. W. Ibrahim, B. A. Aziz, M. R. Deraman, and N. A. Ismail. 2017. A review of rare earth mineral processing technology. Chemical Engineering Research Bulletin Engineering Chemical Engineering Research Bulletin 19:20–35. doi:10.3329/cerb.v19i0.33773.
  • Tian, G. C., J. Li, and Y. X. Hua. 2009. Application of ionic liquids in metallurgy of nonferrous metals. The Chinese Journal of Process Engineering 9:200–06.
  • Tian, G. C., J. Li, and Y. X. Hua. 2010. Application of ionic liquids in hydrometallurgy of nonferrous metals. Transactions of Nonferrous Metals Society of China 20 (3):513–20. doi:10.1016/S1003-6326(09)60171-0.
  • Tian, J., K. Pan, Z. Lang, R. Huang, W. Sun, H. Chu, and H. Liu. 2022. Thermodynamics of imidazolium-based ionic liquids for inhibiting the spontaneous combustion of sulfide ore. Sustainability 14 (13):7915–19. doi:10.3390/su14137915.
  • Tran, T. T., and H. S. Moon, “M. S. Lee. 2021. Co, Ni, Cu, Fe, and Mn integrated recovery process via sulfuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys. Mineral Processing and Extractive Metallurgy Review 1–15. doi:10.1080/08827508.2021.1979541.
  • Tran, T. T., H. S. Moon, and M. S. Lee. 2022. Recovery of cobalt, nickel and copper compounds from UHT processed spent lithium-ion batteries by hydrometallurgical process. Mineral Processing and Extractive Metallurgy Review 43 (4):453–65. doi:10.1080/08827508.2021.1910508.
  • Wang, D. Z. 2017. Flotation reagents: ‘Applied surface chemistry on mineral flotation and energy resource benification’. Beijing: Metallurgical Industry Press.
  • Wang, L., Y. Hu, W. Sun, and Y. Sun. 2015. Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite. Applied Surface Science 327:364–70. doi:10.1016/j.apsusc.2014.11.160.
  • Welton, T. 2002. Room-Temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews 99 (8):2071–83. doi:10.1021/cr980032t.
  • Whitehead, J. A., G. A. Lawrance, and A. McCluskey. 2004. ’Green’ Leaching: “Recyclable and selective leaching of gold-bearing ore in an ionic liquid”. Green Chemistry: An International Journal and Green Chemistry Resource: GC 6 (7):313–15. doi:10.1039/B406148A.
  • Whitehead, J. A., J. Zhang, A. McCluskey, and G. A. Lawrance. 2009. Comparative leaching of a sulfidic gold ore in ionic liquid and aqueous acid with thiourea and halides using Fe (III) or HSO5− oxidant. Hydrometallurgy 3 (98):276–80. doi:10.1016/j.hydromet.2009.05.012.
  • Whitehead, J. A., J. Zhang, N. Pereira, A. McCluskey, and G. A. Lawrance. 2007. Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper.” gold and silver ores. Hydrometallurgy 88 (1–4):109–20. doi:10.1016/j.hydromet.2007.03.009.
  • Wills, B. A., and J. Finch. 2016. Wills’ mineral processing technology. 8th ed. Oxford, UK: Butterworth-Heinemann.
  • Yang, L., X. Li, W. Li, X. Yan, and H. Zhang. 2019. Intensification of interfacial adsorption of dodecylamine onto quartz by ultrasonic method. Separation and Purification Technology 227:115701. doi:10.1016/j.seppur.2019.115701.
  • Yuan, Z., H. Liu, W. F. Yong, Q. She, and J. Esteban. 2022. Status and advances of deep eutectic solvents for metal separation and recovery. Green Chemistry 24 (5):1895–929. doi:10.1039/D1GC03851F.
  • Zante, G., and M. Boltoeva. 2020. Review on hydrometallurgical recovery of metals with deep eutectic solvents. Sustainable Chemistry 1 (3):238–55. doi:10.3390/suschem1030016.
  • Zhang, S. J. 2008. Ionic liquids from fundamental study to industrial application, 35–95. Beijing: Science Press.
  • Zhang, C., X. H. Fang, Y. Y. Xia, S. Zhang, and H. Y. Zeng. 2016. Leaching of a refractory silver concentrate in[bmim]hso 4-Thiourea system. Nonferrous Metals Engineering 6 (04):38–40.
  • Zhang, Z., N. Kang, J. Wang, H. Sui, L. He, and X. Li. 2018. Synthesis and application of amino acid ionic liquid-based deep eutectic solvents for oil-carbonate mineral separation. Chemical Engineering Science 181:264–71. doi:10.1016/j.ces.2018.02.023.
  • Zhang, M. M., and R. G. Reddy. 2010. Thermodynamic properties of C4mim [Tf2N] ionic liquids. Mineral Processing and Extractive Metallurgy 119 (2):71–76. doi:10.1179/037195510X12665949176490.
  • Zhang, H., Z. Xu, W. Sun, D. Chen, S. Li, M. Han, H. Yu, and C. Zhang. 2021. Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz. Separation and Purification Technology 275:119137. doi:10.1016/j.seppur.2021.119137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.