149
Views
12
CrossRef citations to date
0
Altmetric
Research Article

A New Perspective on the Understanding of High-Intensity Conditioning: Incompatibility of Conditions Required for Coarse and Fine Coal Particles

ORCID Icon, , , , , , , & show all

References

  • Ai, G., K. Huang, C. Liu, and S. Yang. 2021. Exploration of amino trimethylene phosphonic acid to eliminate the adverse effect of seawater in molybdenite flotation. International Journal of Mining Science Technology 31 (6):1129–34. doi:10.1016/j.ijmst.2021.10.010.
  • Anzoom, S. J., S. K. Tripathy, A. Dubey, R. Singh, and A. Mukherjee. 2020. Comparative response on flotation of coal by using process and de-ionized water. Mineral Processing and Extractive Metallurgy Review 41 (6):361–69. doi:10.1080/08827508.2019.1654473.
  • Bhattacharya, S., and R. Pascoe. 2004. Effect of temperature on coal flotation performance—A review. Mineral Processing and Extractive Metallurgy Review 26 (1):31–61. doi:10.1080/08827500490477586.
  • Bulatovic, S., and R. Salter. 1989. High intensity conditioning—A new approach to improving flotation of mineral slimes. In Processing of complex ores, edited by G. S. Dobby and S. R. Rao, 169–81. Oxford: Elsevier.
  • Cai, J., P. Shen, D. Liu, X. Zhang, J. Fang, C. Su, X. Yu, J. Li, and H. Wang. 2021. Growth of covellite crystal onto azurite surface during sulfurization and its response to flotation behavior. International Journal of Mining Science Technology 31 (6):1003–12. doi:10.1016/j.ijmst.2021.07.005.
  • Chakraborty, D., A. K. Singh, and P. Banerjee. 2008. Floatability characteristics: A case study with three typical Indian prime coking coals. Mineral Processing & Extractive Metallurgy Review 29 (4):299–317. doi:10.1080/08827500802043375.
  • Chanturiya, V., and S. Kondratiev. 2019. Contemporary understanding and developments in the flotation theory of non-ferrous ores. Mineral Processing and Extractive Metallurgy Review 40 (6):390–401. doi:10.1080/08827508.2019.1657863.
  • Cheng, G., J. Liu, X. Gui, Z. Hu, and Y. Wang. 2016. Effect of different grinding conditions on the dissociation and flotation of difficult-to-float coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (8):1103–09. doi:10.1080/15567036.2013.824522.
  • Cheng, G., M. Zhang, Y. Zhang, B. Lin, H. Zhan, and H. Zhang. 2022. A novel renewable collector from waste fried oil and its application in coal combustion residuals decarbonization. Fuel 323:124388. doi:10.1016/j.fuel.2022.124388.
  • Du, M., L. Liu, J. Ren, J. Fan, G. Li, and Y. Cai. 2022. Study on the classification and floc-flotation process of Huangling coal slime. Separation Science and Technology 57 (4):589–602. doi:10.1080/01496395.2021.1920979.
  • Farrokhpay, S., L. Filippov, and D. Fornasiero. 2021. Flotation of fine particles: A review. Mineral Processing and Extractive Metallurgy Review 42 (7):473–83. doi:10.1080/08827508.2020.1793140.
  • Feng, D., and C. Aldrich. 2005. Effect of preconditioning on the flotation of coal. Chemical Engineering Communications 192 (7):972–83. doi:10.1080/009864490521534.
  • Gupta, A. K., P. Banerjee, A. Dutta, and A. Mishra. 2007. Recovery of clean coal fines through a combination of gravity concentrator and flotation processes. Mineral Processing and Extractive Metallurgy Review 28 (4):299–319. doi:10.1080/08827500601141461.
  • Huang, G., J. Liu, L. Wang, and Z. Song. 2016. Flow field simulation of agitating tank and fine coal conditioning. International Journal of Mineral Processing 148:116–23. doi:10.1016/j.minpro.2016.01.020.
  • Huang, G., J. Xu, K. Li, Q. Qi, L. Sun, S. Wan, P. Jiang, and R. Wang. 2021. The mechanism of conditioning on improving fine coal flotation. Journal of China Coal Society 47 (S1):246–56.
  • Huang, G., H. Xu, L. Ma, and L. Wu. 2018. Improving coal flotation by classified conditioning. International Journal of Coal Preparation and Utilization 38 (7):361–73. doi:10.1080/19392699.2016.1267639.
  • Li, D., C. Zhang, X. Li, L. Yang, X. Yan, L. Wang, Q. Liu, and H. Zhang. 2020. Experimental study on the preconditioning of fine coal particles surface modification using a new type flow mixer. Fuel 268:1–10. doi:10.1016/j.fuel.2020.117361.
  • Mao, Y., W. Xia, Y. Peng, and G. Xie. 2019. Ultrasonic-assisted flotation of fine coal: A review. Fuel Processing Technology 195:1–19. doi:10.1016/j.fuproc.2019.106150.
  • Ma, L., L. Wei, X. Jiang, X. Zhao, and Q. Chen. 2013. Effects of shearing strength in slurry conditioning on coal slime flotation. Journal of China Coal Society 38 (1):140–44.
  • Ma, L., L. Wei, J. Li, and Q. Chen. 2012. Study of theory of efficient coal slurry conditioning and its application. Journal of China University of Mining and Technology 41 (2):315–19.
  • Statistics, C.N.B.o. 2021. China statistical yearbook 2021. Beijing: China Statistics Press.
  • Sun, Y., G. Xie, Y. Peng, Y. Chen, and G. Ma. 2019. How does high intensity conditioning affect flotation performance? International Journal of Coal Preparation Utilization 39 (6):302–16. doi:10.1080/19392699.2017.1316717.
  • Wang, H., D. Li, W. Yang, L. Wang, H. Zhang, and X. Yan. 2022. Optimizing oxidized coal flotation using impact flow conditioning pulp. International Journal of Coal Preparation and Utilization 42 (8):2299–313. doi:10.1080/19392699.2020.1837786.
  • Wang, H., W. Yang, D. Li, C. Zhang, X. Yan, L. Wang, and H. Zhang. 2020a. Enhancement of coal flotation using impact flow conditioning pulp. Journal of Cleaner Production 267:1–9. doi:10.1016/j.jclepro.2020.122124.
  • Wang, H., W. Yang, D. Li, C. Zhang, X. Yan, L. Wang, and H. Zhang. 2020b. Numerical simulation and experimental study of impact flow enhancing flotation pulp conditioning. Journal of China Coal Society 45 (S1):443–50.
  • Xia, W.-C., J. Yang, C. Liang, and B. Zhu. 2014. The effects of conditioning time on the flotation of oxidized coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (1):31–37. doi:10.1080/15567036.2012.697095.
  • Yu, Y., L. Ma, L. Wu, G. Ye, and X. Sun. 2017. The role of surface cleaning in high intensity conditioning. Powder Technology 319:26–33. doi:10.1016/j.powtec.2017.06.048.
  • Zhang, H., H. Wang, R. Chen, X. Yan, K. Zheng, D. Li, and J. Shanyong. 2022. Turbulence enhancement mechanism of coal slime pulp conditioning and new type vortex enhancing pulp conditioning process. Journal of China Coal Society 47 (2):934–45.
  • Zhou, W. 2019. Study on the optimization of flow field of jet pulp-mixing and the interaction mechanism of coal slime and collecting agent. Huainan: Anhui University of Science and Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.