218
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Oxidative Flotation Separation of Chalcopyrite and Pyrite Using K2FeO4 in Seawater

, , , &

References

  • Archambo, M., and S. K. Kawatra. 2021. Red mud: Fundamentals and new avenues for utilization. Mineral Processing and Extractive Metallurgy Review 42 (7):427–50. doi:10.1080/08827508.2020.1781109.
  • Biesinger, M. C., L. W. M. Lau, A. R. Gerson, and R. S. C. Smart. 2010. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science 257 (3):887–98. doi:10.1016/j.apsusc.2010.07.086.
  • Buckley, A. N. 1984. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite. Australian Journal of Chemistry 4:401–14.
  • Canterford, J. H. 1985. Magnesia—An important industrial mineral: A review of processing options and uses. Mineral Processing and Extractive Metallurgy Review 2 (1–2):1–2. doi:10.1080/08827508508952601.
  • Chandra, A. P., and A. R. Gerson. 2010. The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surface Science Reports 65 (9):293–315. doi:10.1016/j.surfrep.2010.08.003.
  • Chernyshova, I. V. 2004. Pyrite oxidation mechanism in aqueous solutions: An in situ FTIR study. Russian Journal of Electrochemistry 40 (1):69–77. doi:10.1023/B:RUEL.0000012077.98531.fe.
  • Cisternas, L. A., and E. D. Gálvez. 2018. The use of seawater in mining. Mineral Processing and Extractive Metallurgy Review 39 (1):18–34. doi:10.1080/08827508.2017.1389729.
  • Cisternas, L. A., J. I. Ordóñez, R. I. Jeldres, and R. Serna-Guerrero. 2021. Toward the implementation of circular economy strategies: An overview of the current situation in mineral processing. Mineral Processing and Extractive Metallurgy Review 43 (6):775–97. doi:10.1080/08827508.2021.1946690.
  • Cornell, R. M., R. Giovanoli, and W. Schneider. 2007. Review of the hydrolysis of iron(III) and the crystallization of amorphous iron(III) hydroxide hydrate. Journal of Chemical Technology & Biotechnology 46 (2):115–34. doi:10.1002/jctb.280460204.
  • Cruz, C., Y. L. Botero, R. I. Jeldres, L. Uribe, and L. A. Cisternas. 2021. Current status of the effect of seawater ions on copper flotation: Difficulties, opportunities, and industrial experience. Mineral Processing and Extractive Metallurgy Review 43 (5):545–63. doi:10.1080/08827508.2021.1900175.
  • Deroubaix, G., and P. Marcus. 2010. X‐ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surface and Interface Analysis 18 (1):39–46. doi:10.1002/sia.740180107.
  • Descostes, M., F. Mercier, N. Thromat, C. Beaucaire, and M. Gautier-Soyer. 2000. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Applied Surface Science 4:288–302.
  • Ejtemaei, M., and A. V. Nguyen. 2017. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate. Minerals Engineering 100:223–32. doi:10.1016/j.mineng.2016.11.005.
  • Golroudbary, S. R., I. Makarava, and A. Kraslawski. 2022. Environmental assessment of global magnesium production. Mineral Processing & Extractive Metallurgy Review 1–18. doi:10.1080/08827508.2022.2084734.
  • Han, G., S. Wen, H. Wang, and Q. Feng. 2020. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Separation and Purification Technology 240:116650. doi:10.1016/j.seppur.2020.116650.
  • Harmer, S. L., J. E. Thomas, D. Fornasiero, and A. R. Gerson. 2006. The evolution of surface layers formed during chalcopyrite leaching. Geochimica et Cosmochimica Acta 70 (17):4392–402. doi:10.1016/j.gca.2006.06.1555.
  • Hernández, I. F., J. I. Ordóñez, P. A. Robles, E. D. Gálvez, and L. A. Cisternas. 2017. A methodology for design and operation of heap leaching systems. Mineral Processing and Extractive Metallurgy Review 38 (3):180–92. doi:10.1080/08827508.2017.1281807.
  • Jeldres, R. I., L. Forbes, and L. A. Cisternas. 2016. Effect of seawater on sulfide ore flotation: A review. Mineral Processing & Extractive Metallurgy Review 37 (6):369–84. doi:10.1080/08827508.2016.1218871.
  • Khoso, S. A., Y. Hu, F. Lü, Y. Gao, R. Liu, and W. Sun. 2019. Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite. Transactions of Nonferrous Metals Society of China 29 (12):2604–14. doi:10.1016/S1003-6326(19)65167-8.
  • Lee, R. L. J., X. Chen, and Y. Peng. 2022. Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion. Minerals Engineering 177:107387. doi:10.1016/j.mineng.2021.107387.
  • Liao, R., Q. Feng, S. Wen, and J. Liu. 2020. Flotation separation of molybdenite from chalcopyrite using ferrate(vi) as selective depressant in the absence of a collector. Minerals Engineering 152:106369. doi:10.1016/j.mineng.2020.106369.
  • Li, Y., A. P. Chandra, and A. R. Gerson. 2014. Scanning photoelectron microscopy studies of freshly fractured chalcopyrite exposed to O2 and H2O. Geochimica et Cosmochimica Acta 133:372–86. doi:10.1016/j.gca.2014.02.037.
  • Li, Y., N. Kawashima, J. Li, A. P. Chandra, and A. R. Gerson. 2013. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Advances in Colloid and Interface Science 197–198:1–32. doi:10.1016/j.cis.2013.03.004.
  • Li, W., and Y. Li. 2019. Improved understanding of chalcopyrite flotation in seawater using sodium hexametaphosphate. Minerals Engineering 134:269–74. doi:10.1016/j.mineng.2019.02.019.
  • Li, Y., W. Li, Z. Wei, Q. Xiao, C. Lartey, Y. Li, and S. Song. 2018a. The influence of common chlorides on the adsorption of SBX on chalcopyrite surface during flotation process. Mineral Processing and Extractive Metallurgy Review 40 (2):129–40. doi:10.1080/08827508.2018.1497625.
  • Li, Y., G. Qian, J. Li, and A. R. Gerson. 2015. Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV. Geochimica et Cosmochimica Acta 161:188–202. doi:10.1016/j.gca.2015.04.012.
  • Liu, Y., Y. Li, J. Chen, D. Kang, and X. Yang. 2022. Influence of sulfur vacancy on pyrite oxidization by water and oxygen molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects 634:127954. doi:10.1016/j.colsurfa.2021.127954.
  • Li, Y., Z. Wei, Q. Xiao, H. Gao, and S. Song. 2018b. A fundamental DFT study of chalcopyrite surface evolution due to impurity divalent ions during leaching process. Minerals Engineering 121:205–11. doi:10.1016/j.mineng.2018.03.007.
  • McGinnity, J. J., and M. J. Nicol. 2013. Sulfuric acid mist: Generation, suppression, health aspects, and analysis. Mineral Processing and Extractive Metallurgy Review 35 (3):149–92. doi:10.1080/08827508.2012.723650.
  • Mcintyre, N. S., and M. G. Cook. 1975. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Analytical Chemistry 47 (13):2208–13. doi:10.1021/ac60363a034.
  • Mckibben, M. A., and H. L. Barnes. 1986. Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochimica et Cosmochimica Acta 50 (7):1509–20. doi:10.1016/0016-7037(86)90325-X.
  • Mekki, A., and G. D. Khattak. 2010. X-ray photoelectron spectroscopy study of sodium-copper-germanate glasses. Physica Status Solidi 207 (1):73–79. doi:10.1002/pssa.200925193.
  • Mkhonto, P. P., X. Zhang, L. Lu, W. Xiong, Y. Zhu, L. Han, and P. E. Ngoepe. 2022. Adsorption mechanisms and effects of thiocarbamate collectors in the separation of chalcopyrite from pyrite minerals: DFT and experimental studies. Minerals Engineering 176:107318. doi:10.1016/j.mineng.2021.107318.
  • Moimane, T., C. Plackowski, and Y. Peng. 2020. The critical degree of mineral surface oxidation in copper sulphide flotation. Minerals Engineering 145:106075. doi:10.1016/j.mineng.2019.106075.
  • Mu, Y., Y. Peng, and R. A. Lauten. 2016. The depression of pyrite in selective flotation by different reagent systems – A Literature review. Minerals Engineering 96–97:143–56. doi:10.1016/j.mineng.2016.06.018.
  • Naghavi, M., G. Mazloom, A. Akbari, and F. Banisharif. 2021. Deep oxidative desulfurization by sulfated alumina catalyst using ferrate (Fe(VI)) oxidant derived from scrap iron. Chemical Engineering Research & Design 174:454–62. doi:10.1016/j.cherd.2021.08.029.
  • Nakai, I., Y. Sugitani, K. Nagashima, and Y. Niwa. 1978. X-ray photoelectron spectroscopic study of copper minerals. Journal of Inorganic and Nuclear Chemistry 40 (5):789–791. doi:10.1016/0022-1902(78)80152-3.
  • Nesbitt, H. W., and I. J. Muir. 1998. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Mineralogy and Petrology 62 (1–2):123–44. doi:10.1007/BF01173766.
  • Niu, X., J. Chen, Y. Li, L. Xia, L. Li, H. Sun, and R. Ruan. 2019. Correlation of surface oxidation with xanthate adsorption and pyrite flotation. Applied Surface Science 495:143411. doi:10.1016/j.apsusc.2019.07.153.
  • Richard, K. F. S., A. E. B. Torres, D. A. S. Maia, W. A. de Sousa, C. L. Cavalcante, D. C. S. Azevedo, and M. Bastos-Neto. 2021. Assessing mass transfer rates in porous adsorbents using gas adsorption microcalorimetry. Chemical Engineering Science 229:115983. doi:10.1016/j.ces.2020.115983.
  • Ruiz, M. C., I. González, V. Rodriguez, and R. Padilla. 2021. Solvent extraction of copper from sulfate–chloride solutions using LIX 84-IC and LIX 860-IC. Mineral Processing and Extractive Metallurgy Review 42 (1):1–8. doi:10.1080/08827508.2019.1647839.
  • Suyantara, G. P. W., T. Hirajima, H. Miki, and K. Sasaki. 2018. Floatability of molybdenite and chalcopyrite in artificial seawater. Minerals Engineering 115:117–30. doi:10.1016/j.mineng.2017.10.004.
  • Wang, D., F. Jiao, W. Qin, and X. Wang. 2017. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant. Separation Science and Technology 53 (6):961–72. doi:10.1080/01496395.2017.1405042.
  • Wei, Z., Y. Li, H. Gao, Y. Zhu, G. Qian, and J. Yao. 2019. New insights into the surface relaxation and oxidation of chalcopyrite exposed to O2 and H2O: A first-principles DFT study. Applied Surface Science 492:89–98. doi:10.1016/j.apsusc.2019.06.191.
  • Xian, Y., Q. Nie, S. Wen, J. Liu, and J. Deng. 2015. Investigation of pyrite surface state by DFT and AFM. Journal of Central South University 22 (7):2508–14. doi:10.1007/s11771-015-2779-0.
  • Yang, X., Y. Li, R. Fan, W. Duan, L. Huang, and Q. Xiao. 2022. Separation mechanism of chalcopyrite and pyrite due to H2O2 treatment in low-alkaline seawater flotation system. Minerals Engineering 176:107356. doi:10.1016/j.mineng.2021.107356.
  • Yin, Q., D. J. Vaughan, K. E. R. England, G. H. Kelsall, and N. Brandon. 2000. Surface oxidation of chalcopyrite (CuFes[sub 2]) in alkaline solutions. Journal of the Electrochemical Society 147 (8):2945–51. doi:10.1149/1.1393629.
  • Zhang, Y., Z. Cao, Y. Cao, and C. Sun. 2013. FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces. Journal of Molecular Structure 1048:434–40. doi:10.1016/j.molstruc.2013.06.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.