185
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Development of a vibration sensor-based tool for online detection of roping in small-diameter hydrocyclones

, &

References

  • Banerjee, C., K. Chaudhury, E. Cid, F. Bourgeois, S. Chakraborty, A. Majumder, and E. Climent. 2022. Oscillation dynamics of the air-core in a hydrocyclone. Physics of Fluids 34 (9):1–15. doi:10.1063/5.0099985.
  • Bradley, D. 1965. The hydrocyclone. Oxford: Pergamon Press.
  • Chakraborti, N., and J. D. Miller. 1992. Fluid flow in hydrocyclones: A critical review. Mineral Processing and Extractive Metallurgy Review 11 (4):211–44. doi:10.1080/08827509208914207.
  • Cisternas, L. A., J. I. Ordonez, R. I. Jeldres, and R. Serna-Guerrero. 2022. Toward the implementation of circular economy strategies: An overview of the current situation in mineral processing. Mineral Processing and Extractive Metallurgy Review 43 (6):775–97. doi:10.1080/08827508.2021.1946690.
  • Concha, F., A. Barrientos, J. Montero, and R. Sampaio. 1996. Air core and roping in hydrocyclones. International Journal of Mineral Processing 44-45:743–49. doi:10.1016/0301-7516(95)00080-1.
  • Davailles, A., E. Climent, F. Bourgeois, and A. K. Majumder. 2012. Analysis of swirling flow in hydrocyclones operating under dense regime. Minerals Engineering 31:32–41. doi:10.1016/j.mineng.2012.01.012.
  • Daza, J., P. Cornejo, C. Rodriguez, F. Betancourt, and F. Concha. 2020. Influence of the feed particle size distribution on roping in hydrocyclones. Minerals Engineering 157:1–14. doi:10.1016/j.mineng.2020.106583.
  • Dubey, R. K., E. Climent, C. Banerjee, and A. K. Majumder. 2016. Performance monitoring of a hydrocyclone based on underflow discharge angle. International Journal of Mineral Processing 154:41–52. doi:10.1016/j.minpro.2016.07.002.
  • Dubey, R. K., G. Singh, and A. K. Majumder. 2017. Roping: Is it an optimum dewatering performance condition in a hydrocyclone? Powder Technology 321:218–31. doi:10.1016/j.powtec.2017.08.018.
  • Dyakowski, T., and R. A. Williams. 1995. Prediction of air-core size and shape in a hydrocyclone. International Journal of Mineral Processing 43 (1–2):1–14. doi:10.1016/0301-75169500002-U.
  • Ek, C. 1987. Design, capital and operating costs of mineral processing plants. Mineral Processing and Extractive Metallurgy Review 2 (4):255–88. doi:10.1080/08827508708952608.
  • Fahlstrom, P. H. 1963. Studies of hydrocyclone as a classifier. In Proceedings of the 6th International Mineral Processing Congress, ed. A. Roberts, 87–114. Cannes: Pergamon Press.
  • Gutierrez, J. A., T. Dyakowski, M. S. Beck, and R. A. Williams. 2000. Using electrical impedance tomography for controlling hydrocyclone underflow discharge. Powder Technology 108 (2–3):180–84. doi:10.1016/S0032-59109900218-1.
  • Hararah, M. A., E. Endres, J. Dueck, L. Minkov, and T. Neesse. 2010. Flow conditions in the air core of the hydrocyclone. Minerals Engineering 23 (4):295–300. doi:10.1016/j.mineng.2009.12.013.
  • Heiskanen, K. 2000. Experimental hydrocyclone roping models. Chemical Engineering Journal 80 (1–3):289–93. doi:10.1016/S1383-5866(00)00104-0.
  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. 1998. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 454 (1971):903–95. doi:10.1098/rspa.1998.0193.
  • Hulbert, D. G. 1993. Measurement method and apparatus for hydrocyclones. Pat EP0522215A2. South Africa: Randburg.
  • Kawatra, S. K., and A. K. Bakshi. 1995. On-line viscometry in particulate processing. Mineral Processing and Extractive Metallurgy Review 14 (3–4):249–73. doi:10.1080/08827509508914126.
  • Liu, Y., S. Miwa, T. Hibiki, M. Ishii, Y. Kondo, H. Morita, and K. Tanimoto. 2012. Experimental study of internal two-phase flow induced fluctuating force on a 90° elbow. Chemical Engineering Science 76 (9):173–87. doi:10.1016/j.ces.2012.04.021.
  • Lynch, A. J., T. C. Rao, and C. W. Bailey. 1975. The influence of design and operating variables on the capacities of hydrocyclone classifiers. International Journal of Mineral Processing 2 (1):29–37. doi:10.1016/0301-7516(75)90010-1.
  • Mazumdar, A., R. K. Dubey, C. Banerjee, K. Sengupta, and A. K. Majumder. 2014. A study on the characteristics of spray angle formation in a 2 inch hydrocyclone using water only. International Journal of Mineral Processing 126:141–45. doi:10.1016/j.minpro.2013.11.002.
  • Miller, J. D., C. L. Lin, and A. B. Cortes. 2007. A review of X-ray computed tomography and its applications in mineral processing. Mineral Processing and Extractive Metallurgy Review 7 (1):1–18. doi:10.1080/08827509008952663.
  • Mishra, S., and A. K. Majumder. 2022. Online techniques for performance and condition monitoring of hydrocyclone: Present status and the future. Mineral Processing and Extractive Metallurgy Review 1–16. doi:10.1080/08827508.2022.2047042.
  • Mishra, S., M. H. Tyeb, B. B. Mandal, and A. K. Majumder. 2022. Application potential of vibration sensors for online process monitoring of hydrocyclones. Mineral Processing and Extractive Metallurgy Review 1–14. doi:10.1080/08827508.2022.2115488.
  • Miwa, S., M. Mori, and T. Hibiki. 2015. Two-phase flow induced vibration in piping systems. Progress in Nuclear Energy 78:270–84. doi:10.1016/j.pnucene.2014.10.003.
  • Mohanty, S., and B. Das. 2010. optimization studies of hydrocyclone for beneficiation of iron ore slimes. Mineral Processing and Extractive Metallurgy Review 31 (2):86–96. doi:10.1080/08827500903397142.
  • Mular, A. L., and N. A. Jull. 1980. The selection of cyclone classifiers, pumps and pump boxes for grinding circuits. In Mineral Processing Plant Design, ed. A. L. Mular and R. B. Bhappu, 376–39. New York: SME/AIME
  • Narasimha, M., A. N. Mainza, P. N. Holtham, M. S. Powell, and M. S. Brennan. 2014. A semimechanistic model of hydrocyclones—developed from industrial data and inputs from CFD. International Journal of Mineral Processing 133 (10):1–12. doi:10.1016/j.minpro.2014.08.006.
  • Nayak, D. K., D. P. Das, S. Prasad, S. K. Behera, and J. K. Sadangi. 2020. Prevention of hydrocyclone choking through detection of sub‑Hz frequency shift of vibration signal. Journal of Vibration Engineering and Technologies 8 (4):517–28. doi:10.1007/s42417-019-00107-2.
  • Neesse, T., and J. Dueck. 2007. Air core formation in the hydrocyclone. Minerals Engineering 20 (4):349–54. doi:10.1016/j.mineng.2007.01.007.
  • Neesse, T., M. Schneider, V. Golyk, and H. Tiefel. 2004. Measuring the operating state of the hydrocyclone. Minerals Engineering 17 (5):697–703. doi:10.1016/j.mineng.2004.01.015.
  • Pathak, S. S., S. Mishra, M. H. Tyeb, and A. K. Majumder. 2022. Spigot design modification to alleviate roping in hydrocyclone. Mining, Metallurgy and Exploration 39 (2):761–75. doi:https://doi.org/10.1007/s42461-021-00503-x.
  • Perez, D., P. Cornejo, C. Rodriguez, F. Betancourt, and F. Concha. 2018. Transition from spray to roping in hydrocyclones. Minerals Engineering 123:71–84. doi:10.1016/j.mineng.2018.04.008.
  • Plitt, L. R., B. C. Flintoff, and T. J. Stuffco, 1987. Roping in hydrocyclones. In Proceedings of the 3rd International Conference on Hydrocyclones, ed. P. Wood, 21–34. Oxford, BHRA. Elsevier, Amsterdam, Paper A, Amsterdam, Paper A3
  • Prashun, A. L. 1980. Fundamentals of fluid mechanics, 20222. , 20222. Englewood Cliffs, NJ: Prentice Hall. Chap. 7.
  • Pratiwi, M. A., M. Ikhsan, R. D. Octavianto, A. Hamid, and S. Subekti. 2021. Dynamic characterization of ball bearing in turbine propeller using bump test method. Sinergi 25 (2):135–40. doi:10.22441/sinergi.2021.2.004.
  • Riverin, J. L., and M. J. Pettigrew. 2007. Vibration excitation forces due to two-phase flow in piping elements. Journal of Pressure Vessel Technology 129 (1):7–13. doi:10.1115/1.2388994.
  • Shi, F. N., T. J. Napier-Munn, and I. K. Asomah. 2000. Rheological effects in grinding and classification. Mineral Processing and Extractive Metallurgy Review 20 (1):123–31. doi:10.1080/08827509908962467.
  • Spencer, S., and Y. Liu. 2005. Statistical signal processing methods for acoustic emission monitoring of dense medium cyclones. IEEE 5:875–78.
  • Van Vuuren, M. J., C. Aldrich, and L. Auret. 2011. Detecting changes in the operational states of hydrocyclones. Minerals Engineering 24 (14):1532–44. doi:10.1016/j.mineng.2011.08.002.
  • Wang, G., Q. Liu, C. Wang, L. Dong, D. Dai, and L. Shen. 2020. Study of blockage diagnosis for hydrocyclone using vibration-based technique based on wavelet denoising and discrete-time fourier transform method. Processes 8 (4):440–54. doi:10.3390/pr8040440.
  • Welch, P. D. 1967. The use of fast fourier transforms for the estimation of power spectra: A method based on time averaging over short modified periodograms. IEEE Transactions on Audio and Electroacoustics 15 (2):70–73. doi:10.1109/TAU.1967.1161901.
  • Williams, R. A., X. Jia, R. M. West, M. Wang, J. C. Cullivan, J. Bond, I. Faulks, T. Dyakowski, S. J. Wang, N. Climpson, et al. 1999. Industrial monitoring of hydrocyclone operation using electrical resistance tomography. Minerals Engineering 12 (10):1245–52. doi:10.1016/S0892-6875(99)00109-0.
  • Yih, T. S., and P. Griffith. 1968. Unsteady momentum fluxes in two-phase flow and the vibration of nuclear reactor components. MIT Report, No. DSR 70318-58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.