1,050
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Modelling the Thermal Treatment and Expansion of Mineral Microspheres (Perlite) in Electric Furnace Through Computational Fluid Dynamics (CFD): Effect of Process Conditions and Feed Characteristics

ORCID Icon, &

References

  • Abolpour, B., M. M. Afsahi, M. Yaghobi, A. S. Goharrizi, and M. Azizkarimi. 2017. Interaction of heat transfer and gas flow in a vertical hot tube. Heat and Mass Transfer 53 (7):2409–17. doi:10.1007/s00231-017-1991-x.
  • Alderliesten, M. 2013. Mean particle diameters. Part VII. the Rosin-Rammler size distribution: Physical and mathematical properties and relationships to Moment-Ratio defined mean particle diameters. Particle & Particle Systems Characterization 30 (3):244–57. doi:10.1002/ppsc.201200021.
  • Angelopoulos, P. M., D. I. Gerogiorgis, and I. Paspaliaris. 2013. Model-based sensitivity analysis and experimental investigation of perlite grain expansion in a vertical electrical furnace. Industrial & Engineering Chemistry Research 52 (50):17953–75. doi:10.1021/ie401144r.
  • Angelopoulos, P. M., D. I. Gerogiorgis, and I. Paspaliaris. 2014. Mathematical modeling and process simulation of perlite grain expansion in a vertical electrical furnace. Applied Mathematical Modelling 38 (5–6):1799–822. doi:10.1016/j.apm.2013.09.019.
  • Angelopoulos, P., C. Kapralou, and M. Taxiarchou. 2011. CFD modeling of vertical electrical furnace for perlite expansion-study of the air temperature and velocity profiles. 7th International Congress on Computational Mechanics, Athens, Greece. CD edition.
  • Angelopoulos, P. M., C. Maliachova, K. Papakonstantinou, M. Taxiarchou, and S. Diplas. 2016. Structural and physical characteristics of fine perlite expanded with a novel method in a vertical electric furnace. Mineral Processing and Extractive Metallurgy 125 (2):71–80. doi:10.1080/03719553.2016.1156244.
  • Angelopoulos, P. M., N. Manic, B. Jankovic, and M. Taxiarchou. 2021. Thermochimica acta thermal decomposition of volcanic glass (rhyolite): Kinetic deconvolution of dehydration and dehydroxylation process. Thermochimica Acta 707:179082. doi:10.1016/j.tca.2021.179082.
  • Angelopoulos, P. M., N. Manić, P. Tsakiridis, M. Taxiarchou, and B. Janković. 2020. Dehydration of rhyolite: Activation energy, water speciation and morphological investigation. Journal of Thermal Analysis and Calorimetry 142 (1):395–407. doi:10.1007/s10973-020-10105-2.
  • Angelopoulos, P. M., N. R. Vrithias, Z. Viskadourakis, P. Tsakiridis, K. C. Vasilopoulos, A. Peppas, G. Asimakopoulos, A. V. Spyrou, M. A. Karakassides, M. Taxiarchou, et al. 2022. Methods of Preparation and Performance Evaluation of ABS/Mineral Microsphere Composites Produced through FDM and Compression Molding. Materials (Basel) 15 (14):5021. doi:10.3390/ma15145021.
  • Anirudh, S., C. G. Jayalakshmi, A. Anand, B. Kandasubramanian, and S. O. Ismail. 2022. Epoxy/Glass syntactic foams for structural and functional application-A Review. European Polymer Journal 171:111163. doi:10.1016/j.eurpolymj.2022.111163.
  • Azarnivand, A., Y. Behjat, and A. A. Safekordi. 2018. CFD simulation of gas–solid flow patterns in a downscaled combustor-style FCC regenerator. Particuology 39:96–108. doi:10.1016/j.partic.2017.10.009.
  • Badzioch, S., and P. G. W. Hawksley. 1970. Kinetics of thermal decomposition of pulverized coal particles. Industrial & Engineering Chemistry Process Design and Development 9 (4):521–30. doi:10.1021/i260036a005.
  • Bagdassarov, N., F. Ritter, and Y. Yanev. 1999. Kinetics of perlite degassing: TG and DSC analysis. Glass Science and Technology 72:277–90. doi:10.1016/s0140-6701%2801%2980621-4.
  • Bai, C., J. Shao, X. Li, Z. Zhang, Y. Qiao, J. Hao, H. Li, T. Zheng, and P. Colombo. 2022. Fabrication and properties of slag-based geopolymer syntactic foams containing hollow glass microspheres. Materials letters 308:131158. doi:10.1016/j.matlet.2021.131158.
  • Berdi, T., M. Founti, E. Kakaras, A. Klipfel, and Z. Ntouros. 1993. On the optimisation of expansion processes of industrial minerals. Energy Efficiency in Process Technology 827–36. doi:10.1007/978-94-011-1454-7_73.
  • Blevins, L. G., and W. M. Pitts. 1999. Modeling of bare and aspirated thermocouples in compartment fires. Fire Safety Journal 33 (4):239–59. doi:10.1016/S0379-7112(99)00034-X.
  • Brohez, S., C. Delvosalle, and G. Marlair. 2004. A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires. Fire safety journal 39 (5):399–411. doi:10.1016/j.firesaf.2004.03.002.
  • Brzeski, D., I. L. Hia, J. F. Chauvette, R. D. Farahani, N. Piccirelli, A. Ross, and D. Therriault. 2021. Design of thermoset composites for high-speed additive manufacturing of lightweight sound absorbing micro-scaffolds. Additive Manufacturing 47:102245. doi:10.1016/j.addma.2021.102245.
  • Bu, F., J. Zhang, S. Yu, Q. Li, G. Li, J. Wang, X. Wu, and T. Goto. 2020. Effective surface pretreatment of hollow glass microspheres via a combined KF roughening and alkali washing strategy for the following metallization. Advanced Powder Technology 31 (6):2305–14. doi:10.1016/j.apt.2020.03.024.
  • Chang, K., G. A. Irons, and Q. Jiao. 2005. A mathematical Model of a Dc Electric Furnace for Recovery of Zinc from Lead Blast Furnace Slag. Canadian Metallurgical Quarterly 44 (2):281–88. doi:10.1179/cmq.2005.44.2.281.
  • Chattopadhyay, K., M. Isac, and R. I. L. Guthrie. 2001. Kinetics of perlite glasses degassing. TG and DSC analysis. Fuel and Energy Abstracts 42:58. doi:10.1016/S0140-6701(01)80621-4.
  • Chen, F., Y. Zhang, J. Liu, X. Wang, P. K. Chu, B. Chu, and N. Zhang. 2020. Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity. Construction and Building Materials 249:118728. doi:10.1016/j.conbuildmat.2020.118728.
  • Cuevas, K., M. Chougan, F. Martin, S. H. Ghaffar, D. Stephan, and P. Sikora. 2021. 3D printable lightweight cementitious composites with incorporated waste glass aggregates and expanded microspheres – Rheological, thermal and mechanical properties. Journal of Building Engineering 44:102718. doi:10.1016/j.jobe.2021.102718.
  • Dong, X., M. Wang, X. Tao, J. Liu, and A. Guo. 2020. Properties of heat resistant hollow glass microsphere/phosphate buoyancy materials with different coatings. Ceramics International 46 (1):415–20. doi:10.1016/j.ceramint.2019.08.277.
  • Elghobashi, S. 1994. On predicting particle-laden turbulent flows. Applied Scientific Research 52 (4):309–29. doi:10.1007/BF00936835.
  • Friedman, H. L. 1963. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia 6 (1):183–95. doi:10.1002/polc.5070060121.
  • Greifzu, F., C. Kratzsch, T. Forgber, F. Lindner, and R. Schwarze. 2016. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT. Engineering Applications of Computational Fluid Mechanics 10 (1):30–43. doi:10.1080/19942060.2015.1104266.
  • Hu, F. F., Y. F. Cheng, B. B. Zhang, B. -Y. Jiang, C. Ji, and R. Liu. 2022. Flame propagation and temperature distribution characteristics of magnesium dust clouds in an open space. Powder Technology 404:117513. doi:10.1016/j.powtec.2022.117513.
  • Hu, M., Z. Chen, S. Wang, D. Guo, C. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, B. Xiao, et al. 2016. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Conversion and Management 118:1–11. doi:10.1016/j.enconman.2016.03.058.
  • Jamali, S., S. Javanshir, H. Arabyarmohammadi, and P. Tahmasebizadeh. 2022. Process Optimization and Flowsheet Development for Zinc and Copper Recycling from Reverberatory Furnace Flue Dust. Mineral Processing and Extractive Metallurgy Review 43 (3):360–72. doi:10.1080/08827508.2020.1861614.
  • Jokilaakso, A., T. Ahokainen, O. Teppo, Y. YANG, and K. LILIUS. 1995. Experimental and Computational-Fluid-Dynamics Simulation of the Outokumpu Flash Smelting Process. Mineral Processing and Extractive Metallurgy Review 15 (1–4):217–34. doi:10.1080/08827509508914200.
  • Kalman, H., and E. Matana. 2022. Terminal velocity and drag coefficient for spherical particles. Powder Technology 396:181–90. doi:10.1016/j.powtec.2021.10.053.
  • Kannan, B., S. Karthikeyan, and S. Sundararaj. 2017. Comparison of turbulence models in simulating axisymmetric jet flow. In Innovative design and development practices in aerospace and automotive engineering. Lecture notes in mechanical engineering, ed. R. Bajpai and U. Chandrasekhar, 401–408. Singapore: Springer.
  • Kanthal Company official webpage Kanthal® APM and Kanthal APMT Fe-Cr-Al Alloys. Accessed October 7, 2021. https://www.kanthal.com/en/products/furnace-products-and-heating-systems/furnace-tubes/kanthal-apm-and-apmt/
  • Klipfel, A., M. Founti, K. Zähringer, J. P. Martin, and J. P. Petit. 1998. Numerical simulation and experimental validation of the turbulent combustion and perlite expansion processes in an industrial perlite expansion furnace. Flow, Turbulence and Combustion 60 (3):283–300. doi:10.1023/A:1009900726809.
  • Konbul, A., E. M. Ozbayoglu, and C. Mata. 2020. Survival of hollow glass microspheres in drilling fluids applications – Effect of drill bit/formation contact. Journal of Petroleum Science and Engineering 189:106966. doi:10.1016/j.petrol.2020.106966.
  • Le Maitre, R., A. Streckeisen, B. Zanettin, M. Le Bas, B. Bonin, and P. Bateman. 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. 2nd ed. Cambridge: Cambridge University Press.
  • Leong, G. W., K. H. Mo, Z. P. Loh, and Z. Ibrahim. 2020. Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers. Construction and Building Materials 246:118410. doi:10.1016/j.conbuildmat.2020.118410.
  • Li, D., Y. Tang, X. Zuo, X. Zhao, K. Shang, and H. Yang. 2022. Functionally constructed mineral microspheres for efficient photothermal conversion and thermal energy storage. Carbon 196:365–77. doi:10.1016/j.carbon.2022.05.010.
  • Meshram, P., and Abhilash. 2020. Recovery and recycling of cerium from primary and secondary resources- a critical review. Mineral Processing and Extractive Metallurgy Review 41 (4):279–310. doi:10.1080/08827508.2019.1677647.
  • Mookherjee, S., A. A. Gadkari, D. M. Deo, and A. Goswami. 1992. Pyrometallurgical Preconcentration Technique for the Recovery of Copper, Nickel and Cobalt from Copper Converter Slag. Mineral Processing and Extractive Metallurgy Review 9 (1):213–22. doi:10.1080/08827509208952706.
  • Papanastassiou, D. 1980. Perlite expansion in a vertical furnace- a simplified theoretical analysis. Transactions of the Institution of Mining and Metallurgy Section C Mineral Processing and Extractive Metallurgy 89:C120–24.
  • Rallini, M., I. Puri, L. Torre, and M. Natali. 2018. Thermal and ablation properties of EPDM based heat shielding materials modified with density reducer fillers. Composites Part A, Applied Science and Manufacturing 112:71–80. doi:10.1016/j.compositesa.2018.05.031.
  • Roulia, M., K. Chassapis, J. A. Kapoutsis, E. I. Kamitsos, and T. Savvidis. 2006. Influence of thermal treatment on the water release and the glassy structure of perlite. Journal of Materials Science 41 (18):5870–81. doi:10.1007/s10853-006-0325-z.
  • Scott, N. R., D. L. Stoddard, M. D. Nelms, Z. Wallace, I. Turner, L. Turner, M. Croom, K. Franklin, S. Sandifer, M. S. Ali Al-Fahdi, et al. 2022. Cement and Concrete Research Experimental and computational characterization of glass microsphere-cementitious composites. Cement and Concrete Research 152:106671. doi:10.1016/j.cemconres.2021.106671.
  • Shackley, D. 1988. Characterisation and expansion of perlite. United Kingdom: University of Nottingham.
  • Shih, T. -H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids 24 (3):227–38. doi:10.1016/0045-7930(94)00032-T.
  • Song, K., and A. Jokilaakso. 2022. Transport Phenomena in Copper Bath Smelting and Converting Processes–A Review of Experimental and Modeling Studies. Mineral Processing and Extractive Metallurgy Review 43 (1):107–21. doi:10.1080/08827508.2020.1806835.
  • Sonti, K. S. M., S. Vincent, and S. K. R. Narala. 2022. Effect of single and hybrid hollow sphere reinforcement on the deformation mechanism of aluminum matrix syntactic foam at a low strain rate. Journal of Alloys and Compounds 901:163573. doi:10.1016/j.jallcom.2021.163573.
  • Spoerk, M., J. Sapkota, G. Weingrill, T. Fischinger, F. Arbeiter, and C. Holzer. 2017. Shrinkage and warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing. Macromolecular Materials and Engineering 302 (10):1–13. doi:10.1002/mame.201700143.
  • Sronsri, C., P. Noisong, and C. Danvirutai. 2017. Thermal decomposition kinetics of Mn0.9Co0.1HPO4·3H2O using experimental-model comparative and thermodynamic studies. Journal of Thermal Analysis and Calorimetry 127 (3):1983–94. doi:10.1007/s10973-016-5720-3.
  • Sugash, G., I. S. V. Venkat, M. V. Reddy, S. R. Ali, Sava, and J. H. S. Krishna. 2021. Numerical investigation of combustion characteristics of a four-stroke single cylinder CI engine under various turbulence models. International Journal of Ambient Energy 42 (15):1758–64. doi:10.1080/01430750.2019.1614989.
  • Tahmooresi, S., and D. Ahmadyar. 2021. Effects of turbulent schmidt number on CFD simulation of 45 inclined negatively buoyant jets. Environmental Fluid Mechanics 21 (1):39–62. doi:10.1007/s10652-020-09762-6.
  • Tatlisu, G. C., C. Aciksari, S. Celebi, and S. Turan. 2022. Developing a hollow glass microsphere/geopolymer thermal insulation composite for hot metal surface coating. Ceramics International 48 (9):11924–39. doi:10.1016/j.ceramint.2022.01.042.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520 (1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Yang, S., X. Zhao, W. Sun, J. Yuan, and Z. Wang. 2019. Effect of ring baffle configuration in a self-priming venturi scrubber using CFD simulations. Particuology 47:63–69. doi:10.1016/j.partic.2019.02.003.
  • Zähringer, K., J. P. Martin, and J. P. Petit. 2001. Numerical simulation of bubble growth in expanding perlite. Journal of Materials Science 36 (11):2691–705. doi:10.1023/A:1017960729550.
  • Zhou, J., Y. Liu, C. Du, S. Liu, and J. Li. 2018. Numerical study of course coal particle breakage in pneumatic conveying. Particuology 38:204–14. doi:10.1016/j.partic.2017.07.003.