547
Views
3
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review on Occurrence and Processing of Phosphate Rock Based Resources- Focus on REEs

, ORCID Icon, ORCID Icon &

References

  • Abdelhadi, M., N. Abdelhad, and T. El-Hasanet. 2018. Optimization of phosphogypsum by-production using orthophosphoric acid as leaching solvent with different temperatures and leaching time periods. Earth Science Research 7 (2):28–41. doi:10.5539/esr.v7n2p28.
  • Abisheva, Z. S., Z. B. Karshigina, Y. G. Bochevskaya, A. Akcil, E. A. Sargelova, M. N. Kvyatkovskaya, and I. Y. Silachyov. 2017. Recovery of rare earth metals as critical raw materials from phosphorus slag of long-term storage. Hydrometallurgy 173:271–82. doi:10.1016/j.hydromet.2017.08.022.
  • Alemrajabi, M., K. Forsberg, and Å. Rasmuson. 2018. Recovery of phosphorous and rare earth elements from an apatite concentrate. In Extraction 2018. The minerals, metals & materials series, edited by B. R. Davis, 2409–13. Cham: Springer.
  • Al-Hwaiti, M., K. A. Ibrahim, and M. Harrara. 2019. Removal of heavy metals from waste phosphogypsum materials using polyethylene glycol and polyvinyl alcohol polymers. A Rabian Journal of Chemistry 12 (8):3141–50. doi:10.1016/j.arabjc.2015.08.006.
  • Alonso, E., A. M. Sherman, T. J. Wallington, M. P. Everson, F. R. Field, R. Roth, and R. E. Kirchain. 2012. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environmental Science & Technology 46 (6):3406–14. doi:10.1021/es203518d.
  • Al-Thyabat, S., and P. Zhang. 2015. REE extraction from phosphoric acid, phosphoric acid sludge, and phosphogypsum. Mineral Processing and Extractive Metallurgy 124 (3):143–150. doi:10.1179/1743285515Y.0000000002.
  • Amine, M., F. Asafar, L. Bilali, and M. Nadifiyine. 2019. Hydrochloric acid leaching study of rare earth elements from moroccan phosphate. Journal of Chemistry 10. doi:10.1155/2019/4675276.
  • Antonick, P. J., Z. Hu, Y. Fujita, D. W. Reed, G. Das, L. Wu, R. Shivaramaiah, P. Kim, A. Eslamimanesh, M. M. Lencka, et al. 2019. Bio-and mineral acid leaching of rare earth elements from synthetic phosphogypsum. Journal of Chemical Thermodynamics 132:491–96. doi:10.1016/j.jct.2018.12.034.
  • Bafghi, M. S., A. H. Emami, and A. Zakeri. 2013. Effect of specific surface area of a mechanically activated chalcopyrite on its rate of leaching in sulfuric acid–ferric sulfate media. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 44 (5):1166–72. doi:10.1007/s11663-013-9890-0.
  • Baláž, P. 2008. Mechanochemistry in Minerals Engineering. In Mechanochemistry in nanoscience and minerals engineering, 257–96. Berlin, Heidelberg: Springer.
  • Baláž, P., E. Boldizarova, M. Achimovicova, and R. Kammel. 2000. Leaching and dissolution of a pentlandite concentrate pretreated by mechanical activation. Hydrometallurgy 57 (1):85–96. doi:10.1016/S0304-386X(00)00102-X.
  • Bao, Z., and Z. Zhao. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews 33 (3–4):519–35. doi:10.1016/j.oregeorev.2007.03.005.
  • Bartekova, E., and R. Kemp. 2016. “National strategies for securing a stable supply of rare earths in different world regions. Resources Policy 49:153–64. doi:10.1016/j.resourpol.2016.05.003.
  • Begum, Z. A., I. M. M. Rahman, T. Takase, and H. Hasegawa. 2019. Formation and stability of the mixed-chelator complexes of Sr 2+, mg 2+, ca 2+, Ba 2+, and Y 3+ in solution with bio-relevant chelators. Journal of Inorganic Biochemistry 195:141–48. doi:10.1016/j.jinorgbio.2019.03.018.
  • Belboom, S., C. Szöcs, and A. Léonard. 2015. Environmental impacts of phosphoric acid production using di-hemihydrate process: A Belgian case study. Journal of Cleaner Production 108:978–86. doi:10.1016/j.jclepro.2015.06.141.
  • Binnemans, K., P. T. Jones, B. Blanpain, T. Van Gerven, and Y. Pontikes. 2015. Towards zero-waste valorization of rare-earth-containing industrial process residues: A critical review. Journal of Cleaner Production 99:17–38. doi:10.1016/j.jclepro.2015.02.089.
  • Bochevskaya, Y. G., Z. Abisheva, A. S. Sharipova, and Z. Karshigina. 2020. Nitric-acid processing of phosphorus production slag with the recovery of rare-earth metals. International Journal of Mechanical and Production Engineering Research and Development 10 (3):12871–80.
  • Bosco-Santos, A., W. Luiz-Silva, E. V. D. Silva-Filho, M. D. C. D. Souza, E. L. Dantas, and M. S. Navarro. 2016. Fractionation of rare earth and other trace elements in crabs, Ucides cordatus, from a subtropical mangrove affected by fertilizer. Journal of Environmental Science 54:69–76. doi:10.1016/j.jes.2016.05.024.
  • British Geological Survey. 2017. Bureau de Recherches Geologiques et Minieres, Deloitte Sustainability, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (European Commission). TNO. https://op.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-11e7-b92d-01aa75ed71a1.
  • Brückner, L., T. Elwert, and T. Schirmer. 2020. Extraction of rare earth elements from phosphogypsum: Concentrate digestion, leaching, and purification. Metals 10 (1):131. doi:10.3390/met10010131.
  • Bunus, F. T. 2000. Uranium and rare earth recovery from phosphate fertilizer industry by solvent extraction. Mineral Processing and Extractive Metallurgy Review 21 (1–5):1–5. doi:10.1080/08827500008914174.
  • Cánovas, C. R., S. Chapron, G. Arrachart, and S. Pellet-Rostaing. 2019. Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials. Journal of Cleaner Production, Elsevier 219:225–35. doi:10.1016/j.jclepro.2019.02.104.
  • Commission of European Communities. 2017. Communication on the 2017 list of critical raw materials for the EU. Document 52017DC0490 1–8.
  • Cortina, J. L., E. Meinhardt, O. Roijals, and V. Martí. 1998. Modification and preparation of polymeric adsorbents for precious-metal extraction in hydrometallurgical processes. Reactive & Functional Polymers 36 (2):149–65. doi:10.1016/S1381-5148(97)00109-0.
  • CPCB. 2012. Guidelines for Management and Handling of Phosphogypsum Generated from Phosphoric Acid Plants. Delhi, India: HAZWAMS/2012-2013.
  • EI-Didamony, H., H. S. Gado, N. S. Awwad, M. M. Fawzy, and M. F. Attallah. 2013. Treatment of phosphogypsum waste produced from phosphate ore processing. Journal of Hazardous Materials 244-245:596–602. doi:10.1016/j.jhazmat.2012.10.053.
  • Emsbo, P., I. P. Mclauglin, N. G. Breit, A. E. Bray, and E. A. Koenig. 2015. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Research 27 (2):776–85. doi:10.1016/j.gr.2014.10.008.
  • Ennaciri, Y., and M. Bettach. 2018. Procedure to convert phosphogypsum waste into valuable products. Materials and Manufacturing Processes 33 (16):1727–33. doi:10.1080/10426914.2018.1476763. .
  • Erust, C., M. K. Karacahan, and T. Uysal. 2022. Hydrometallurgical roadmaps and future strategies for recovery of rare earth elements. Mineral Processing and Extractive Metallurgy Review 1–15. doi:10.1080/08827508.2022.2073591.
  • Ficeriova, J., P. Baláž, and C. L. Villachica. 2005. Thiosulfate leaching of silver, gold and bismuth from a complex sulfide concentrates. Hydrometallurgy 77 (1–2):35–39. doi:10.1016/j.hydromet.2004.09.010.
  • Gaetjens, T., R. Counce, and J. Watson. 2019a. Comparative economic analysis of rare earth element separation from phosphoric acid waste streams. Master’s Thesis.
  • Gaetjens, T., H. Liang, P. Zhang, R. Moser, H. Thomasson, H. Dyleewski, R. Counce, and J. Watson. 2019b. Economic optimization of rare earth element leaching kinetics from phosphogypsum with sulfuric acid. Master’s Thesis.
  • Genkin, M. V., A. V. Evtushenko, A. A. Komkov, A. M. Safiulina, V. S. Spiridonov, and S. V. Shvetsov. 2014. A method for concentrating rare-earth metals in phosphogypsum. Patent No. WO2014148945 A1.
  • Gennari, R. F., I. Garcia, N. H. Medina, and M. A. G. Silveira. 2011. Phosphogypsum analysis: Total content and extractable element concentrations. International Nuclear Atlantic Conference October 24-28, Belo Horizonte, MG, Brazil.
  • Ghazaleh, A., and P. Zhang. 2019. Treatment of phosphoric acid sludge for rare earths recovery II: Effect of sonication and flocculant solution temperature on settling rate. Separation Science and Technology 54 (11):1842–52. doi:10.1080/01496395.2018.1536715.
  • Goldstein, I. J. 1965. Preparation of the precipitate and of rare earth oxides from Kola apatites. Chemical Reviews 16:359–60.
  • Grabas, K., A. Pawełczyk, W. Stręk, E. Szełęg, and S. Stręk. 2019. Study on the properties of waste apatite phosphogypsum as a raw material of prospective applications. Waste and Biomass Valorization 10 (10):3143–55. doi:10.1007/s12649-018-0316-8.
  • Guo, L., Z. Hu, Y. Du, T. C. Zhang, and D. Du. 2021. Mechanochemical activation on selective leaching of arsenic from copper smelting flue dusts. Journal of Hazardous Material 414:125–436. doi:10.1016/j.jhazmat.2021.125436.
  • Guyonnet, D., M. Planchon, A. Rollat, V. Escalon, J. Tuduri, N. Charles, S. Vaxelaire, D. Dubois, and H. Fargier. 2015. Material flow analysis applied to rare earth elements in Europe. Journal of Cleaner Production 107:215–28. doi:10.1016/j.jclepro.2015.04.123.
  • Habashi, F. 1985. The recovery of the lanthanides from phosphate rock. Journal of Chemical Technology & Biotechnology 35A (1):5–14. doi:10.1002/jctb.5040350103.
  • Hakkar, M., F. E. Arhouni, A. Mahrou, E. Bilal, M. Bertau, A. Roy, G. Steiner, Haneklaus, H. Mazouz, A. Boukhair, et al. 2021. Enhancing rare earth element transfer from phosphate rock to phosphoric acid using an inexpensive fly ash additive. Minerals Engineering 172:107166. doi:10.1016/j.mineng.2021.107166.
  • Hammas-Nasri, I., K. Horchani-Naifer, M. Ferid, and D. Barca. 2016. Rare earth concentration from phosphogypsum waste by two-step leaching method. International Journal of Mineral Processing 149:78–83. doi:10.1016/j.minpro.2016.02.011.
  • Haneklaus, N., Y. Sun, R. Bol, B. Lottermoser, and E. Schnug. 2017. To extract, or not to extract uranium from phosphate rock. Environmental Science & Technology 51 (2):753–54. doi:10.1021/acs.est.6b05506.
  • Hérès, X., V. Blet, P. Di Natale, A. Ouaattou, H. Mazouz, D. Dhiba, and F. Cuer. 2018. Selective extraction of rare earth elements from phosphoric acid by ion exchange resins. Metals (Basel) 8 (9):682. doi:10.3390/met8090682.
  • Innocenzi, V., N. M. Ippolito, I. De Michelis, F. Medici, and F. Veglio. 2016. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis. Journal of Environmental Management 184:552–59. doi:10.1016/j.jenvman.2016.10.026.
  • Ismail, Z. H., E. M. A. Elgoud, F. A. Hai, I. O. Ali, M. S. Gasser, and H. F. Aly. 2015. Leaching of some lanthanides from phosphogypsum fertilizers by mineral acids. Arab Journal of Nuclear Science and Applications 48 (2):37–50.
  • James, S. L., and T. Friščić. 2013. Mechanochemistry: A web themed issue. Chemical Communications 49 (47):5349. doi:10.1039/c3cc90136j.
  • Jarosiński, A., J. Kowalczyk, and C. Mazanek. 1993. Development of the Polish wasteless technology of apatite phosphogypsum utilization with recovery of rare earth. Journal of Alloys and Compounds 200 (1–2):147–50. doi:10.1016/0925-8388(93)90485-6.
  • Kanazawa, Y., and M. Kamitani. 2006. Rare earth minerals and resources in the world. Journal of Alloys and Compounds 408:1339–43. doi:10.1016/j.jallcom.2005.04.033.
  • Karshigina, Z., Z. Abisheva, Y. Bochevskaya, A. Akcil, E. Sargelova, B. Sukurov, and I. Silachyov. 2018. Recovery of rare earth metals (REMs) from primary raw material: Sulphatization-leaching-precipitation-extraction. Mineral Processing and Extractive Metallurgy Review 39 (5):319–38. doi:10.1080/08827508.2018.1434778.
  • Katarzyna, K., D. Gajda, and G. Zakrzewska-Kołtuniewicz. 2020. Recovery of uranium and other valuable metals from substrates and waste from copper and phosphate industries. Separation Science and Technology 55 (12):2099–107.
  • Kato, Y., K. Fujinaga, K. Nakamura, Y. Takaya, K. Kitamura, J. Ohta, R. Toda, T. Nakashima, and H. Iwamori. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience 4 (8):535–39. doi:10.1038/ngeo1185.
  • Kauwenbergh, S. J. V. 2010. World phosphate rock reserves and resources. Alabama, US: International Fertilizer Development Center (IFDC)-T-75. ISBN 978-0-88090-167-3.
  • Kawatra, S. K., and J. J. Carlson. 2014. Beneficiation of Phosphate Ore. Society for Mining, Metallurgy and Exploration, Englewood, CO, February.
  • Keekan, K. K., J. C. Jalondhara, and Abhilash. 2016. Extraction of Ce and Th from monazite using REE tolerant Aspergillus niger. Mineral Processing and Extractive Metallurgy Review 38 (5):312–20. doi:10.1080/08827508.2017.1350956.
  • Koopman, C., and G. J. Witkamp. 2000. Extraction of Lanthanides from the phosphoric acid production process to gain a purified gypsum and a valuable lanthanide by-product. Hydrometallurgy 58 (1):51–60. doi:10.1016/S0304-386X(00)00127-4.
  • Korenevsky, A. A., V. V. Sorokin, and G. Karavaiko. 1998. Biosorption of rare earth elements. Mineral Processing and Extractive Metallurgy Review 19 (1):341–53. doi:10.1080/08827509608962451.
  • Kremer, R. A., and J. C. Chokshi. 1989. Fate of Rare Earth Elements in Mining/Beneficiation of Florida Phosphate Rock and Conversion to DAP Fertilizer; Research Report. Mobil Mining and Minerals Company, Nichols, FL, USA.
  • Kulczycka, J., Z. Kowalski, M. Smol, and H. Wirth. 2016. Evaluation of the recovery of Rare Earth Elements (REE) from phosphogypsum waste–case study of the Wizow Chemical Plant (Poland). Journal of Cleaner Production 113:345–54. doi:10.1016/j.jclepro.2015.11.039.
  • Kurkinen, S., S. Virolainen, and T. Sainio. 2021. Recovery of rare earth elements from phosphogypsum waste in the resin-in-leach process by eluting with biodegradable complexing agents. Hydrometallurgy 201:105569. doi:10.1016/j.hydromet.2021.105569.
  • Lambert, A., J. Anawati, M. Walawalkar, J. Tam, and G. Azimi. 2018. Innovative application of microwave treatment for recovering of rare earth elements from phosphogypsum. ACS Sustainable Chemical Engineering 6 (12):16471–81. doi:10.1021/acssuschemeng.8b03588.
  • Laurino, J. P., and J. Mustacato. 2015. The Extraction and Recovery of Rare Earth Elements from Phosphate Using PX-107 and CHELOK® Polymers. The Florida Industrial and Phosphate Research Institute, Publication No. 02-189-255.
  • Laurino, J. P., J. Mustacato, and Z. J. Huba. 2019. Rare earth element recovery from acidic extracts of Florida phosphate mining materials using chelating polymer 1-octadecene, polymer with 2,5-furandione, sodium salt. Minerals 9 (8):477. doi:10.3390/min9080477.
  • Liang, H., P. Zhang, D. DeSimone, Z. Jin, R. Counce, and D. DePaoli. 2017. Rare Earths Recovery and Gypsum Upgrade from Florida Phosphogypsum. Society for Mining, Metallurgy, and Exploration, Inc.
  • Li, H., W. Ge, J. Zhang, R. M. Kasomo, J. Leng, X. Weng, Q. Chen, Q. Gao, S. Song, L. Xiao, et al. 2020. Control foaming performance of phosphate rocks used for wet-process of phosphoric acid production by phosphoric acid. Hydrometallurgy 195:105364. doi:10.1016/j.hydromet.2020.105364.
  • Li, S., M. Malik, and G. Azimi. 2022. Extraction of rare earth elements from phosphogypsum using mineral acids: Process development and mechanistic investigation. ACS, Industrial and EngineeringChemistry Research 6 (12):102–14. doi:10.1021/acs.iecr.1c03576.
  • Lisiansky, L., M. Baker, K. Larmour-Ship, and O. Elyash. 2015. A Tailor Made Approach for the Beneficiation of Phosphate Rock. International Engineering Conferences, Beneficiation of Phosphates VII, Proceedings, Spring, Melbourne, Australia, 3–29. https://dc.engconfintl.org/phosphates_vii/24
  • Littlejohn, P., and J. Vaughan. 2013. Recovery of nickel and cobalt from laterite leach tailings through resin-in-pulp scavenging and selective ammoniacal elution. Mineral Engineering 54:14–20. doi:10.1016/j.mineng.2013.02.002.
  • Lokshin, E. P., and O. A. Tareeva. 2010. Recovery of lanthanides from extraction phosphoric acid produced by the dihydrate process. Russian Journal of Applied Chemistry 83 (6):951–57. doi:10.1134/S1070427210060042.
  • Lounamaa, N., T. Mattila, V. P. Judin, and H. E. Sund. 1980. Recovery of rare earths from phosphate rock by solvent extraction. Proceedings 2nd International Congress on Phosphorus Compounds, Boston, Mass. Institut Mondial du Phosphate, Paris, 759–68, April 21–25.
  • Mäkinen, J., M. Bomberg, M. Salo, M. Arnold, and P. Koukkari. 2017. Rare earth elements recovery and sulphate removal from phosphogypsum waste waters with sulphate reducing bacteria. Solid State Phenomena 262:573–76.
  • Malanchuk, Z., V. Moshynskyi, Y. Malanchuk, V. Korniienko, and M. Koziar. 2020. Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Engineering Materials 844:77–87.
  • Malyshev, A. S., S. V. Kirillov, E. V. Kirillov, G. M. Bunkov, M. S. Botalov, D. V. Smyshlyaev, and V. N. Rychkov. 2019. Influence of mechanoactivation on kinetics of REE leaching from phosphogypsum. AIP Conference Proceedings 2174:020038.
  • Matta, S., K. Stephan, J. Stephan, R. Lteif, C. Goutaudier, and J. Saab. 2017. Phosphoric acid production by attacking phosphate rock with recycled hexafluorosilicic acid. International Journal of Mineral Processing 161:21–27. doi:10.1016/j.minpro.2017.02.008.
  • Matysik, K. P., K. Gorazda, and Z. Wzorek. 2015. Potential management of waste phosphogypsum with particular focus on recovery of rare earth metals. Polish Journal of Chemical Technology 17 (1):55–61. doi:10.1515/pjct-2015-0009.
  • Meshram, P., and Abhilash. 2020. Recovery and recycling of cerium from primary and secondary resources- a critical review. Mineral Processing and Extractive Metallurgy Review 41 (4):279–310. doi:10.1080/08827508.2019.1677647.
  • Mukaba, J.-L., C. P. Eze, O. Pereao, and L. F. Petrik. 2021. Rare earths’ recovery from phosphogypsum: An overview on direct and indirect leaching techniques. Minerals 11 (10):1051. doi:10.3390/min11101051.
  • Notholt, A. J. G. 1994. Phosphate rock: Factors in economic and technical evaluation. Geological Society of London Special Publications 79 (1):53–65. doi:10.1144/GSL.SP.1994.079.01.07.
  • Odebiyi, O. S., H. Du, K. H. Lasisi, B. Liu, S. Wang, C. C. Nwakanma, and M. O. Nnyia. 2021. Effect of ball mill parameters’ variation on the particles of a mechanical activation-assisted leaching: A hydrometallurgical mechanics. Materials Circular Economy 3 (1):1–2. doi:10.1007/s42824-021-00030-6.
  • Odebiyi, O. S., H. Du, B. Liu, and S. Wang. 2022. Sustainability of valuable metals recovery from hazardous industrial solid wastes: The role of mechanical activation. Journal of Sustainable Metallurgy 8 (4):0123456789. doi:10.1007/s40831-022-00579-9.
  • Ou, Z., J. Li, and Z. Wang. 2015. Application of mechanochemistry to metal recovery from second-hand resources: A technical overview. Environmental Science: Processes & Impacts 17:1522. doi:10.1039/C5EM00211G.
  • Pereao, O., C. Bode-Aluko, O. Fatoba, K. Laatikainen, and L. Petrik. 2018. Rare earth elements removal techniques from water/wastewater: A review. Desalination and Water Treatment Journal 130:1261–76. doi:10.5004/dwt.2018.22844.
  • Preston, J. S., P. M. Cole, P. M. Craig, and A. M. Feather. 1996. The recovery of rare earth oxides from a phosphoric acid by-product. Part 1 leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction. Hydrometallurgy 41:1–19.
  • Ramirez, J. D., R. R. Diwa, B. L. Palattao, E. U. Tabora, A. T. Bautista VII, and R. Y. Reyes. 2021. Economic potential of rare earth elements in the Philippine phosphogypsum. Preprints 2021070342. doi:10.20944/preprints202107.0342.v1.
  • Rasoulnia, P., R. Barthen, and A. Lakaniemi. 2020. A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Critical reviews in environmental science and technology 51 (4):378–427. doi:10.1080/10643389.2020.1727718.
  • Rödel, T., S. Kiefer, and G. Borg. 2022. Rare-earth elements in phosphogypsum and mineral processing residues from phosphate-rich weathered alkaline ultramafic rocks, Brazil. In Industrial waste: Characterization, modification and applications of residues, edited by Pöllmann Herbert, 505–40. Berlin, Germany: De Gruyter.
  • Rychkov, V. N., E. V. Kirillov, S. V. Kirillov, V. S. Semenishchev, G. M. Bunkov, M. S. Botalov, D. V. Smyshlyaev, and A. S. Malyshev. 2018. Recovery of rare earth elements from phosphogypsum. Journal of Cleaner Production 196:674–81. doi:10.1016/j.jclepro.2018.06.114.
  • Samonov, A. E. 2011. New data on mineral forms of rare metals in phosphogypsum wastes. Doklady Akademii Nauk, Geochemistry 40:234–37.
  • Sandström, Å. 2016. Mechanochemical treatment in metallurgy: An metal recovery from primary resources. Conference in Minerals Engineering, Luleå, Luleå tekniska universitet, 1–10.
  • Santana, R. C., C. R. Duarte, C. H. Ataı ́de, and M. A. S. Barrozo. 2011. Flotation selectivity of phosphate ore: Effects of particle size and reagent concentration. Separation Science and Technology 46 (9):1511–18. doi:10.1080/01496395.2011.561268.
  • Sengupta, S. M. 2017. Introduction to sedimentology. 2nd ed. London: Routledge.
  • Silva, L. F. O., M. L. S. Oliveira, T. J. Crissien, M. Santosh, J. Bolivar, L. Shao, and M. Schindler. 2022. A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere 286:1. doi:10.1016/j.chemosphere.2021.131513.
  • Singh, H., S. L. Mishra, M. Anitha, R. Vijayalakshmi, A. B. Giriyalkar, M. K. Kotekar, and T. K. Mukherjee. 2007. A process for the recovery of high purity uranium from fertilizer grade weak phosphoric acid. US Patent No., 7,192,563.
  • Singh, D. K., S. L. Mishra, and H. Singh. 2006. Stripping of iron (III) from D2HEPA+TBP extract produced during uranium recovery from phosphoric acid by oxalic acid. Hydrometallurgy 81 (3–4):214–18. doi:10.1016/j.hydromet.2005.12.006.
  • Skorovarov, D. I., V. D. Kosynkin, S. D. Moiseev, and N. N. Rura. 1992. Recovery of rare earth elements from phosphorites in the USSR. Journal of Alloys Compounds 180 (1–2):71–76. doi:10.1016/0925-8388(92)90364-F.
  • Tayibi, H., M. Choura, F. A. López, F. J. Alguacil, and A. López-Delgado. 2009. Environmental impact and management of phosphogypsum. Journal of Environmental Management 90 (8):2377–86. doi:10.1016/j.jenvman.2009.03.007.
  • Todorovsky, D., A. Terziev, and M. Milanova. 1997. Influence of mechanoactivation on rare earths leaching from phosphogypsum. Hydrometallurgy 45 (1–2):13–19. doi:10.1016/S0304-386X(96)00065-5.
  • USEPA. 1995. Compilation of air pollutant emission factors. Final Background Document for Phosphoric Acid, Section 8.9. North Carolina, US: Pacific Environmental Services, Inc.
  • U.S. Geological Survey. 2022. Mineral commodity summaries 2022: U.S. Geological Survey. 124. doi:10.3133/mcs2022.
  • Valkov, A. V., V. A. Andreev, A. V. Anufrieva, Y. N. Makaseev, S. A. Bezrukova, and N. V. Demyanenko. 2014. Phosphogypsum technology with the extraction of valuable components. Procedia Chemistry 11:176–81. doi:10.1016/j.proche.2014.11.031.
  • Van Enk, R. J., L. K. Acera, R. D. Schuiling, P. Ehlert, J. G. De Wilt, and R. J. F. Van Haren. 2011. The phosphate balance: Current developments and future outlook, ISBN 978-90-5059-414-1. Utrecht, The Netherlands: Innovation Network.
  • Virolainen, S., E. Repo, and T. Sainio. 2019. Recovering rare earth elements from phosphogypsum using a resin-in-leach process: Selection of resin, leaching agent, and eluent. Hydrometallurgy 189:105125. doi:10.1016/j.hydromet.2019.105125.
  • Walawalkar, M., C. K. Nichol, and G. Azimi. 2016a. Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy 166:195–204. doi:10.1016/j.hydromet.2016.06.008.
  • Walawalker, M., C. K. Nichol, and G. Azimi. 2016b. An innovative process for the recovery of consumed acid in RareEarth elements leaching from phosphogypsum. Industrial & Engineering Chemistry Research 55 (48):12309–16. doi:10.1021/acs.iecr.6b03357.
  • Wellham, N. J., and J. Rowe. 2009. Mechanical activation of minerals–past, present and future. Materials of 4th International Conference on Recent Advance in Materials, Mineral Environment and the 2nd Asian Symposium in Materials and Processing. Penang, Malaysia, RAMM & ASMP
  • Wu, S., L. Wang, L. Zhao, P. Zhang, H. El-Shall, B. Moudgil, X. Huang, and L. Zhang. 2017. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes - a critical review. Journal of Chemical Engineering 335:774–800. doi:10.1016/j.cej.2017.10.143.
  • Wu, S., L. Zhao, L. Wang, X. Huang, Y. Zhang, Z. Feng, and D. Cui. 2018. Simultaneous recovery of rare earth elements and phosphorus from phosphate rock by phosphoric acid leaching and selective precipitation: Towards green process. Journal of Rare Earths 37 (6):652–58. doi:10.1016/j.jre.2018.09.012.
  • Yahorava, V., V. Bazhko, and M. Freeman, 2016. Viability of phosphogypsum as a secondary resource of rare earth elements. In Proceedings of the XXVIII International Mineral Processing Congress Proceedings, Quebec, Canada, pp. 5239–54.
  • Yang, X., H. T. Makkonen, and L. Pakkanen. 2019a. Rare earth occurrences in streams of processing a phosphate ore. Minerals 9 (5):262. doi:10.3390/min9050262.
  • Yang, X., D. Salvador, H. T. Makkonen, and L. Pakkanen. 2019b. Phosphogypsum processing for rare earths recovery—A review. Natural Resources 10 (09):325–36. doi:10.4236/nr.2019.109021.
  • Yao, Y., N. F. Farac, and G. Azimi. 2018. Supercritical fluid extraction of rare earth elements from nickel metal hydride battery. ACS Sustainable Chemistry & Engineering 6 (1):1417–26. doi:10.1021/acssuschemeng.7b03803.
  • Zafar, Z. I., M. M. Anwar, and D. W. Pritchard. 1996. A new route for the beneficiation of low-grade calcareous phosphate rocks. Fertilizer Research 44 (2):133–42. doi:10.1007/BF00750803.
  • Zhang, P. 2012. Recovery of critical elements from Florida phosphate: Phase 1. Characterization of rare earths. Proceedings of the ECI International Conference: Rare earth Minerals/Metals–Sustainable Technologies for the Future, San Diego, CA, USA, 12–17.
  • Zhang, P. 2014. Comprehensive recovery and sustainable development of phosphate resources. Procedia Engineering 83:37–51. doi:10.1016/j.proeng.2014.09.010.
  • Zielinski, S., A. Szczepanik, M. Buca, and M. Kunecki. 1993. Recovery of lanthanides from kola apatite in phosphoric-acid manufacture. Journal of Chemical Technology Biotechnology 56 (4):355–60. doi:10.1002/jctb.280560405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.