94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Determination of three stages for molybdenite flotation kinetics in seawater

, , , , &

References

  • Ahmed, N. J., and G. J. Jameson. 1989. Flotation kinetics. Mineral Processing and Extractive Metallurgy Review 5 (1–4):77–99. doi:10.1080/08827508908952645.
  • Ai, G., X. Yang, and X. Li. 2017. Flotation characteristics and flotation kinetics of fine wolframite. Powder Technology 305:377–381. doi:10.1016/j.powtec.2016.09.068.
  • Anzoom, S. J., S. K. Tripathy, A. Dubey, R. Singh, and A. K. Mukherjee. 2020. Comparative response on flotation of coal by using process and de-Ionized water. Mineral Processing and Extractive Metallurgy Review 41 (6):361–369. doi:10.1080/08827508.2019.1654473.
  • Bayat, O., M. Ucurum, and C. Poole. 2013. Effects of size distribution on flotation kinetics of Turkish sphalerite. Mineral Processing and Extractive Metallurgy 113 (1):53–59. doi:10.1179/037195504225004643.
  • Castro, S. 2012. Challenges in flotation Cu-Co sulfide ores in seawater. The First International Symposium on Water in Mineral Processing, Seattle, USA.
  • Castro, F., H. B. De, M. Hoces, and C. De. 1996. Flotation rate of celestite and calcite. Chemical Engineering Science 51 (1):119–125. doi:10.1016/0009-2509(95)00235-9.
  • Castro, S., A. Lopez-Valdivieso, and J. S. Laskowski. 2016. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Processing 148:48–58. doi:10.1016/j.minpro.2016.01.003.
  • Castro, S., P. Rioseco, and J. S. Laskowsk. 2012. Depression of molybdenite in sea water. The XXVI International Mineral Processing Congress, New Delhi.
  • Chen, X., and Y. Peng. 2018. Managing clay minerals in froth flotation―a critical review. Mineral Processing and Extractive Metallurgy Review 39 (5):289–307. doi:10.1080/08827508.2018.1433175.
  • Choi, J., S. Q. Choi, K. Park, Y. Han, and H. Kim. 2016. Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector. International Journal of Mineral Processing 146:38–45. doi:10.1016/j.minpro.2015.11.011.
  • Cruz, C., Y. L. Botero, R. I. Jeldres, L. Uribe, and L. A. Cisternas. 2022. Current status of the effect of seawater ions on copper flotation: Difficulties, opportunities, and industrial experience. Mineral Processing and Extractive Metallurgy Review 43 (5):45–63. doi:10.1080/08827508.2021.1900175.
  • Dowling, E. C., R. R. Klimpel, and F. F. Aplan. 1985. Model discrimination in the flotation of a porphyry copper ore. Minerals & Metallurgical Processing 2 (2):87–101. doi:10.1007/BF03402602.
  • Drzymala, J., P. Bednarek-Gbka, and P. B. Kowalczuk. 2020. Simplified empirical and phenomenological evaluation of relation between particle size and kinetics of flotation. Powder Technology 366:112–118. doi:10.1016/j.powtec.2020.02.041.
  • Drzymal, J., K. Kliszowsk, and T. Ratajczak. 2022. Theoretical and experimental aspects of influence of temperature on kinetics of carbonaceous materials froth flotation. Mineral Processing and Extractive Metallurgy Review 43 (4):422–426. doi:10.1080/08827508.2021.1883012.
  • Edzwald, J. K. 1995. Principles and applications of dissolved air flotation. Water Science and Technology 31 (3–4):1–23. doi:10.2166/wst.1995.0512.
  • Farrokhpay, S., L. Filippov, and D. Fornasiero. 2020. Flotation of fine particles: A review. Mineral Processing and Extractive Metallurgy Review 42 (7):473–483. doi:10.1080/08827508.2020.1793140.
  • Fu, Y., B. Yang, Y. Ma, Q. Sun, J. Yao, W. Fu, and W. Yin. 2020. Effect of particle size on magnesite flotation based on kinetic studies and machine learning simulation. Powder Technology 376:486–495. doi:10.1016/j.powtec.2020.08.054.
  • Gharai, M., and R. Venugopal. 2016. Modeling of flotation process - an overview of different approaches. Mineral Processing and Extractive Metallurgy Review 37 (2):120–133. doi:10.1080/08827508.2015.1115991.
  • Hao, Y., C. Li, K. Zhen, and H. Zhang. 2019. A comparison of flotation performance and flotation kinetics of coal in the natural and degassed deionized water. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (4):475–483. doi:10.1080/15567036.2019.1628131.
  • Hirajima, T., G. P. W. Suyantara, O. Ichikawa, A. M. Elmahdy, H. Miki, and K. Sasaki. 2016. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Minerals Engineering 96-97:83–93. doi:10.1016/j.mineng.2016.06.023.
  • Ikumapayi, F., and K. H. Rao. 2015. Recycling process water in complex sulfide ore flotation: Effect of calcium and sulfate on sulfide minerals recovery. Mineral Processing and Extractive Metallurgy Review 36 (1):45–64. doi:10.1080/08827508.2013.868346.
  • Jeldres, R. I., M. P. Arancibia-Bravo, A. Reyes, C. E. Aguirre, L. Cortes, and L. A. Cisternas. 2017. The impact of seawater with calcium and magnesium removal for the flotation of copper-molybdenum sulphide ores. Minerals Engineering 109:10–13. doi:10.1016/j.mineng.2017.02.003.
  • Jeldres, R. I., L. Forbes, and L. A. Cisternas. 2016. Effect of seawater on sulfide ore flotation: A review. Mineral Processing and Extractive Metallurgy Review 37 (6):369–384. doi:10.1080/08827508.2016.1218871.
  • Li, W., and Y. Li. 2019. Improved understanding of chalcopyrite flotation in seawater using sodium hexametaphosphate. Minerals Engineering 134:269–274. doi:10.1016/j.mineng.2019.02.019.
  • Li, Y., W. Li, Z. Wei, Q. Xiao, C. Lartey, Y. Li, and S. Song. 2018a. The influence of common chlorides on the adsorption of SBX on chalcopyrite surface during flotation process. Mineral Processing and Extractive Metallurgy Review 40 (2):129–140. doi:10.1080/08827508.2018.1497625.
  • Li, W., Y. Li, Z. Wei, Q. Xiao, and S. Song. 2018b. Fundamental studies of SHMP in reducing negative effects of divalent ions on molybdenite flotation. Minerals 8 (9):404. doi:10.3390/min8090404.
  • Liu, Q., and Y. H. Zhang. 2000. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin. Minerals Engineering 13 (13):1405–1416. doi:10.1016/S0892-6875(00)00122-9.
  • Lucay, F., L. A. Cisternas, E. D. Gálvez, and A. López-Valdivieso. 2015. Study of the natural floatability of molybdenite fnes in saline solutions and effect of gypsum precipitatio. Minerals & Metallurgical Processing 32 (4):203–208. doi:10.1007/BF03402476.
  • Ma, G., W. Xia, and G. Xie. 2018. Effect of particle shape on the flotation kinetics of fine coking coal. Journal of Cleaner Production 195:470–475. doi:10.1016/j.jclepro.2018.05.230.
  • Moreno, P., H. Aral, J. Cuevas, A. Monardes, M. Adaro, T. Norgate, and W. Bruckard. 2011. The use of seawater as process water at Las Luces copper-molybdenum beneficiation plant in Taltal (Chile). Minerals Engineering 24 (8):852–858. doi:10.1016/j.mineng.2011.03.009.
  • Neethling, S. J., P. R. Brito-Parada, K. Hadler, and J. J. Cilliers. 2019. The transition from first to zero order flotation kinetics and its implications for the efficiency of large flotation cells. Minerals Engineering 132:149–161. doi:10.1016/j.mineng.2018.11.039.
  • Ni, C., X. Bu, W. Xia, Y. Peng, and G. Xie. 2018. Effect of slimes on the flotation recovery and kinetics of coal particles. Fuel 220:159–166. doi:10.1016/j.fuel.2018.02.003.
  • Ni, C., G. Xie, M. Jin, Y. Peng, and W. Xia. 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technology 292:210–216. doi:10.1016/j.powtec.2016.02.004.
  • Peng, Y., Y. Li, W. Li, X. Fang, C. Liu, and R. Fan. 2020. Elimination of adverse effects of seawater on molybdenite flotation using sodium silicate. Minerals Engineering 146:106108. doi:10.1016/j.mineng.2019.106108.
  • Qiu, Z., G. Liu, Q. Liu, and H. Zhong. 2016. Understanding the roles of high salinity in inhibiting the molybdenite flotation. Colloids and Surfaces A, Physicochemical and Engineering Aspects 509:123–129. doi:10.1016/j.colsurfa.2016.08.059.
  • Sutherland, K. 1948. Physical chemistry of flotation; kinetics of the flotation process. The Journal of Physical and Colloid Chemistry 52 (2):394. doi:10.1021/j150458a013.
  • Suyantara, G. P. W., T. Hirajima, H. Miki, and K. Sasaki. 2018. Floatability of molybdenite and chalcopyrite in artificial seawater. Minerals Engineering 115:117–130. doi:10.1016/j.mineng.2017.10.004.
  • Vinnett, L., G. R. da Silva, C. Marion, C. Carrasco, and K. E. Waters. 2019. The use of enrichment ratios to support kinetic studies in flotation. Minerals Engineering 144:106054. doi:10.1016/j.mineng.2019.106054.
  • Wan, H., W. Yang, T. He, J. Yang, L. Guo, and Y. Peng. 2017. The influence of Ca2+ and pH on the interaction between PAHs and molybdenite edges. Minerals 7 (6):104. doi:10.3390/min7060104.
  • Xu, M., P. Quinn, and R. Stratton-Crawley. 1996. A feed-line aerated flotation column Part I: Batch and continuous testwork. Minerals Engineering 9 (5):499–507. doi:10.1016/0892-6875(96)00038-6.
  • Yuan, X. M., B. I. Palsson, and K. S. E. Forssberg. 1996. Statistical interpretation of flotation kinetics for a complex sulphide ore. Minerals Engineering 9 (4):429–442. doi:10.1016/0892-6875(96)00028-3.
  • Zhang, X., X. Gu, Y. Han, N. Parra-Álvarez, V. Claremboux, and S. K. Kawatra. 2019. Flotation of iron ores: A review. Mineral Processing and Extractive Metallurgy Review 42 (3):184–212. doi:10.1080/08827508.2019.1689494.
  • Zhang, X., Y. Han, and S. K. Kawatra. 2021. Effects of grinding media on grinding products and flotation performance of sulfide ores. Mineral Processing and Extractive Metallurgy Review 42 (3):172–183. doi:10.1080/08827508.2019.1692831.
  • Zhang, H., J. Liu, Y. Cao, and Y. Wang. 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder Technology 246:658–663. doi:10.1016/j.powtec.2013.06.033.
  • Zhu, H., Y. Li, C. Lartey, W. Li, and G. Qian. 2020a. Flotation kinetics of molybdenite in common sulfate salt solutions. Minerals Engineering 148:106182. doi:10.1016/j.mineng.2020.106182.
  • Zhu, X., H. Wei, M. Hou, Q. Wang, X. You, and L. Li. 2020b. Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation. Fuel 262:116627. doi:10.1016/j.fuel.2019.116627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.